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Unnormalised statistical models

@ “Unnormalised” statistical models: models with an intractable
normalisation constant in the likelihood.

@ Popular in Machine Learning, Computer Vision (deep
learning), neuroscience.

o Creates computational difficulties (“doubly intractable
problems” in Bayesian context).
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Unnormalised models: examples

Unnormalised models often correspond to some exponential family

exp {BTS(y)}

where Z(0) is intractable. Examples follow.
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Example 1: Ising models

Yy = (y1,.-.,¥n) where the y;’s are binary variables y; observed on
a lattice:

exp {a Ei.yi + Z,'Nj I(YI = YJ)}
Z(0)

pe(y) =

with @ = (o, 8), Z(0) is then a sum of 2" terms.
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Example 2: exponential random graphs (and networks)

exp{075(y)}

Z(9)
where y = (y1,...,¥p), and y; = 1 if edge i in the network is
active; Z(0) is then a sum of 2P terms, with p = n(n —1)/2.
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Example 3: truncated Gaussian distribution

IID data-points y1, ..., y, from a Gaussian distribution truncated to
10, oo[“:

x) = 3y 0@ {0 =0T =)} oY)

then Z(p, X) is a d—dimensional integral which is difficult to
approximate when d gets large.

Nicolas Chopin (ENSAE) Noise contrastive estimation



Unnormalised sequential models

e Markov sequence yy,...,y, where the transition kernel is
defined up to a constant.

o Example: sequential Ising

p(ytlye-1,a,Q,R) oc exp (ath +y:Qy: + YtRYt—l)

@ Nastier than IID version: n normalisation constants missing.
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Current strategies for inference

o Classical estimation: MCMC-MLE (Geyer, 1994), contrastive
divergence (Bengio and Delalleau, 2009), noise-contrastive
divergence (Gutmann and Hyvérinen, 2012).

@ Bayesian: exchange algorithm (Murray et al., 2012), ABC,
russian roulette (Girolami et al., 2013).

@ | do not know of methods for sequential unnormalised models.
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Our contribution

@ Poisson transform shows you can treat the missing
normalisation constant as just another parameter. Gives you
an alternative likelihood function.

@ Applies to sequential problems as well.

e Noise-contrastive divergence is an approximation of the
Poisson transform and we can now extend it to the sequential
setting.

@ Sequential estimation can be turned into a semiparametric
logistic regression problem.

@ Poisson transform simplifies asymptotic theory and formal
comparison between methods.
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Poisson point processes

@ Poisson processes are distributions over countable subsets of a
domain Q (e.g., 2 = R for a temporal point process).

@ Let S be a realisation from a PP. For all (measurable) A C €,
the number of points of S in A follows a Poisson distribution
with parameter

AA:EusmAn:/AA(y)dy

where A (y) is the intensity function.
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Poisson point processes (I1)

Let’s assume that [, A (y)dy < oo, then
@ The cardinal of S is Poisson, with parameter [, A (y)dy < oo;
e conditional on |S| = k, the elements of S are 11D with density

o exp {A(y)}-
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The likelihood of a Poisson process is:

yi€S

log p(SIA) = D _ log A (yi) —/

Aly)dy
Q
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Poisson point processes (1V)

Consider S ~ PP()\1), S2 ~ PP(\2):
e SUS ~ PP(/\1 + )\2)
@ a point y in 5; US; originates from Sy with probability

A1(y)
M(y) + A2 (y)
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The Poisson transform

@ Generalisation of the Poisson-Multinomial transform (Baker,
1994)

@ For estimation purposes, you can treat |ID data in just about
any space as coming from a Poisson process.

@ New likelihood function: no loss of information, one extra
latent parameter.
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Theorem statement (1)

Data: y1,...,Yn € Q, density p(y|@) o exp {fa(y)}, so
log-likelihood is

L(O)=> foyi) — nlog/ﬂeXP{fe (y)}dy.
i=1
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Theorem statement (1)

Data: y1,...,Yn € Q, density p(y|@) o exp {fa(y)}, so
log-likelihood is

L(O)=> foyi) — nlog/ﬂeXP{fe (y)}dy.
i=1

Poisson log-likelihood:

M(6.v) =Z{fa(yf)+u}—n/9exp{fe (y) + v} dy
=1

i.e. log-likelihood of a PP with intensity \(y) = fo(y) + v.

Nicolas Chopin (ENSAE) Noise contrastive estimation



Theorem statement (I1)

Let 6 = argmax L (0) and (é, 1/*) = argmax M (0,v). Then

_ 6co 0cO,veR
0 = 60* and v* = —log ([ exp{fo~ (y)} dy) .

In other words, the MLE can be computed by maximising M (0, v)
in both variables. There is no loss of information. Also, asymptotic
confidence intervals for 8 are the same. The latent variable v
“estimates” the normalisation constant.
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For fixed 8, maximise M (0, v) wrt v leads to:

v (6) = — log ( oot (y)}dy)
and

M(8,%(8)) = L(6) — n.
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Extension to sequential models

The same logic can be applied to sequential models:

po(yelye—1) o< exp {fo(ye, ye—1)}

We will apply the Poisson transform to each conditional
distribution.
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Extension to sequential models

@ Original log-likelihood of sequence:

n

LO)=> {fo(yr; ye-1) — log </Q exp {fo (y: Yt—l)}dY)]

t=1
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Extension to sequential models

@ Original log-likelihood of sequence:

£0) =Y |lviavi) —og [ e (i ivea))dy )|
t=1
@ Poisson-transformed log-likelihood:

MO.2) = 3 Ualyeiyen) +ver}= [ 3o exp o (i yes) + vii by
t=1 t=1

We have introduced one latent variable v; per observation. Sum of
integrals becomes integral of a single sum.
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Extension to sequential models

Maximising the Poisson-transformed likelihood wrt (6, v), gives the
MLE for 0, and

Vi1 (6%) = —log ( [ et o yH)}dy) ,

i.e. minus the log-marginalisation constant for the conditional

p(yly:t—1,0%) o< exp {fo-(y; ye—1)} -
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From parametric to semi-parametric inference

The value of the latent variables at the mode are a function of
Yi—1:

Vi1 (6) = —log ( [ et v yH)}dy) — \(yer).

If y¢, yy are close, vy, v¢—1 should be close as well, i.e., x (y) is
(hopefully) smooth.
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From parametric to semi-parametric inference

The value of the latent variables at the mode are a function of
Yi—1:

Vi1 (6) = —log ( [ et v yH)}dy) — \(yer).

If y¢, yy are close, vy, v¢—1 should be close as well, i.e., x (y) is
(hopefully) smooth.

= Do inference over x: e.g. if you have n points but x is well
captured by a spline basis with kK < n components, use spline basis
instead. Poisson likelihood becomes:

M(0,x) = {folyeye-1) + x(ye-1)}

t=1

~ [ e o (iven) + xre0) dy
t=1
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Using the Poisson transform in practice

Back to the IID case: Poisson-transformed likelihood still involves
an intractable integral

M(e,u)=Z{fe<yi>+u}—n/9exp{fe (y) + v} dy
=1

which we need to approximate.
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Using the Poisson transform in practice

Back to the IID case: Poisson-transformed likelihood still involves
an intractable integral

M(e,u)=Z{fe<yi>+u}—n/9exp{fe (y) + v} dy
=1

which we need to approximate.
Several ways, but an interesting one is to go through logistic
regression.
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Stochastic gradient descent

Before we go to logistic regression, note that another approach
would be to use Monte Carlo (importance sampling) to obtain an
unbiased estimate of the gradient:

19 1 9 d
nagM 00 = 13 50— [ Sro)e (o )+ ) ay

18Mwy)—1—AMM@m+m®

nov

The we could use SGD (stochastic gradient descent) to maximise

M (0,v).
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The logistic trick

@ ldea: reduce an estimation problem to a classification problem.
@ Several versions:

o Logistic regression for density estimation: Hastie et al. (2003),
intensity estimation: Baddeley et al. (2010).

o Logistic regression for normalisation constants: Geyer (1994).

e Logistic regression for estimation in unnormalised models:
Gutmann and Hyvérinen (2012).

@ The last one is called “noise-contrastive divergence” by the
authors.
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The logistic trick

We have n random points from distributions p(y) and n points
from g(y). We note z; = 1 if the i-th point is from p, z; =0
otherwise. Logistic regression models the log-odds ratio:

1o PE= 1)

1) =18 ol
We have that: )
~og PV

= provided g(y) is known, we can first estimate 7 (doing some
form of logistic regression), and then recover p(y) from n(y).
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From the logistic trick to noise-contrastive divergence

If we have a normalised model pg(y) then we can run a logistic
regression with the following model for the log-odds:

1n(y;0) =logpe(y) —logq(y).
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From the logistic trick to noise-contrastive divergence

If we have a normalised model pg(y) then we can run a logistic
regression with the following model for the log-odds:

1n(y;0) =logpe(y) —logq(y).

If the model is unnormalised, pg(y) o exp {fg(y)}, we introduce an
intercept in the logistic regression

n(y;0) =fo(y) +v —logq(y).

This is the noise-contrastive divergence (NCD) technique of
Gutmann and Hyvérinen (2012).
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Simple interpretation in terms of PP

o We interpret y = (y1,...,yn) as the realisation of a PP with
intensity A\1(y) = nexp{fo(y) + v};

e We interpret x = (x1,...,Xxm) as the realisation of a PP with
(known) intensity A2(y) = mq(y);

@ We mix x and y, and then try to recover the probability that a
given point comes from the original data as

A(y)

P _ log 1
1-p Aa(y)

n
log =log — + fo(y) +v —logq(y)

o If fg(y) = 87 S(y) (exponential model), this is equivalent to a
basic logistic regression (with S(y) as covariate).
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Toy example: truncated exponential

Recall the truncated exponential model:

p(y|0) oc exp (Oy)

We produce reference samples from U(0, 1), so that the logistic
model for NCD is just:

n(y;0) =0y +v

Fitting in R:
m <- glm(z~y+offset(logratio),data=df,family=binomial)
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Summary

e Logistic trick: get a logistic classifier to discriminate true data
from random reference data (from a known distribution). It
implicitly learns a model for the true data

@ NCD: in unnormalised models, introduce an intercept for the
missing normalisation constant

@ Our interpretation: NCD is an approximation of the
Poisson-transformed likelihood
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NCD approximates the Poisson transform

@ In NCD, you can introduce as many reference points (points
simulated from q) as you like.

o Parametrise the log-odds by
n
1(y) = foly) +v +log — —log q(y)

where m is the number of reference points.

@ Theorem: as m — +o0, the logistic log-likelihood R™(8, )
tends to the Poisson log-likelihood M (6, v) (pointwise).
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NCD approximates the Poisson transform

To sum up: take your true n datapoints, add m random reference
datapoints, and estimate the model

Po(y|6) o< exp {fo(y)}

using a logistic regression with log-odds

1(¥) = faly) + v + log = — log q(y)

The intercept will be used to estimate the missing normalisation
constant. The technique is effectively a practical way of
approximating a Poisson-transformed likelihood.
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NCD for sequential models

The relationship between the Poisson transform and NCD shows
directly how to adapt NCD to sequential models: apply NCD to
each conditional distribution (the transition kernels)

@ Reference density q(y) becomes a reference kernel g (y:|y:—1)

@ Include an intercept v; per conditional distribution
p(yelyt-1,0)
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Truncated exponential, revisited

We turn our previous example into a Markov chain:

Yt

1.0

0.2 0.4 0.6 0.8

0.0

p(yelyt—1,0) oc exp (Oyrye—1)

Yer

50 100 150 200
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Truncated exponential, revisited

Consider the NCD approximation for fixed y; 1. The model for the
log-odds will take the form:

n
n(yt) = Oytye—1 + ve—1 + log — —log q(yelye-1)

This leads to a linear logistic regression with y;y; 1 as a covariate.
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Parametric vs. semi-parametric model

It is wasteful to fit a separate intercept per time-point. As in the
semi-parametric version of the Poisson transform, we can use:

n
n ()/t) =0yiyi—1+ X (Yt—l) + log P log q()’t|)’t—1)

r

where x (yt—1) will be fitted using splines.

Nicolas Chopin (ENSAE) Noise contrastive estimation



In practice (1)

Positive examples are given by:
‘ Value at time t — 1 ‘ Value at time t ‘ Label ‘

n Yo 1
¥2 y3 1
Yn—1 Yn 1

While negative examples are given by:
] Value at time t — 1 \ Value at time t \ Label ‘

32! r 0
Y2 r3 0
Ynfl rn 0
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In practice (II)

We can fit the (semi-parametric) model via:

m <- gam(label ~ I(y_t*y_tminusone)+s(y_tminusone),data:

The fully parametric model corresponds to:

m <- gam(label ~ I(y_t*y_tminusone)+as.factor(y_tminusor
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Data

Figure: A sequence of eye movements extracted from the dataset of
Kienzle et al. (2009). Fixation locations are in red and successive
locations are linked by a straight line.

Eye movements recorded while 14 subjects where exploring a set of

photographs (Fig. 1); each contributing between 600 and 2,000
datapoints. .
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LATKES

LATKES: Log-Additive Transition Kernels. A class of spatial
Markov chain models, with applications to eye movement data:

P(Yelye—1,. .., yr—k) o< exp {Z Bivi(ye) + g(yes ye-1, - - a)’t—k)}

where y; ... y: are spatial locations (e.g. on a screen), v; (y) are
spatial covariates, g(...) is an interaction kernel.
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Fitting LATKES using logistic regression

@ Transition kernel only specified up to normalisation constant.

o Can use sequential version of NCD to turn the problem into
(semiparametric) logistic regression.

e Standard packages can be used (mgcv, INLA).
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Example

We fit the model:

P(yelye—1) oc exp {b(||yt||) + raist (|lye — ye-1ll) + rang (£ (yr — ye-1))}

where:
@ b(||yt||) should reflect a centrality bias;

@ raist (||Yt — Ye—1]|) should reflect the fact that successive
fixations are close together;

® rang (£ (yr — yt—1)) should reflect a tendency for making
movements along the cardinal axes (vertical and horizontal).

Nicolas Chopin (ENSAE) Noise contrastive estimation



Note on NCD implementation

o We fitted functions b, rgisy and rang (plus the log-normalising
constant , as already explained) using smoothing splines.
(Extension of NCD to smoothing splines is direct: simply add
appropriate penalty to log-likelihood).

@ We used R package mgcv (Wood, 2006).

@ Reference points were sampled from an Uniform distribution
(over the screen); 20 reference datapoints per datapoint.

@ Requires one line of code of R, took about 5 minutes.
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Results

Estimated effect

500 0 100 200 300 400 500
Distance to center (pix.)

100 200 300 400
Distance to previous fixation (pix.)

/2 0 2
Saccade angle (rel. to vertical)

Figure: The different panels display the estimated effects of saccade angle
(rang). distance to previous fixation (rgs¢) and centrality bias (s).
Individual subjects are in gray, and the group average is in blue.
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References

Inspiration: MCMC-MLE

From now on, we focus on the IID case: yi,...,y, have density

x hg(y) = exp {fa(y)}. Up to a linear transformation, the
log-likelihood is:

1 < Z(6)
— fe i) — f, fi —lo
a2 ) — ) — o8
where 1 is arbitrary. MCMC-MLE (Geyer, 1994): runs MCMC to

sample M points x, from o< exp {f(y)}, use importance sampling
to approximate second term

1 <~ hg(xm) _ Z(6)
(since Z(0) = [ hg(y) dy) then maximise:

5, Z{fe )~ ful)) ~ log { 3 ,’ZZ((’;:))}
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Objective

Clearly NCE and MCMC-MLE have a lot in common: both generate
M “fake” data-points from the model with @ = 1), and both
maximise some pseudo-likelihood. How to compare them formally?
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Comparing the maximisers of three (pseudo-)likelihoods

A

0, = argmax(,(0)

% ’Z:; {fo(yi) — fy(yi)} — log 5((;))

n

~ 1
s _ IS 1 N
en,m = arg maxgn,m(o) - n Z {fg(y,) f'l,b(.yl IOg { Z

i=1
(Qng, D) =arg maxﬁNCE 0,v) Z log q0...(yi) Z log {1 — qgo..(vi)

with

log {%} = fo(y) — fy(y) + 1+ log (%)
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Dealing with different parameter spaces

It is convenient to define all these functions with respect to the
extended parameter space £ = (0,v) € © x RT. To do so:

@ We use the Poisson transform for the true log-likelihood:

1 — Z(0)

,(0,n) =~ folyi) — fp(yi)} +n— e x =——=

(0.1) = ;21 {fo(yi) — fu(yi)} +n Z(0)
@ We define a similar Poisson transform for the MCMC-MLE

likelihood.

All the derivations are done in terms of £, but for your convenience,
| will state the results in terms of 0.
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Asymptotic regime?

o Geyer (1994) takes y1,...,yn fixed, and show that OAf,Sm — 0,
as m — +o0.

e Gutmann and Hyvérinen (2012) take m = 7n, and show that
OnNgE — 0% as m, n — +o0.
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Monte Carlo error

For y1,...,yn fixed, and some constant ¢, under conditions similar
to Geyer (1994)

GNCE _ gIs

m( n,m n,m
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Implications

Geyer (1994) showed that, under very mild assumptions (e.g.
allowing the x,'s to be generated by MCMC), @},Sm is a consistent,
asymptotically normal estimator of the true MLE 8,,. Our result
implies that HAnN%E has exactly the same properties, since it is at
m~! distance from 9},5,”

Note: Geyer (1994)’s proof is based on concepts such as
hypoconvergence (the weakest form of convergence of functions
that ensures that maximisers also converge).
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Overall error

Let m = 7n, and take, m, n — +oo (for 7 fixed). Under mild
assumptions (MCMC sampling),

V(08 — ) B N (04, V)

Vi(OXF — 67) B A (0g, VYE)
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Asymptotic variance comparison

Under 11D sampling (for the x/s), for any 7 > 0, and any %,
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Numerical comparison

Model: y1,...,yn ~ Nso(u, X) (truncated to ]0, +-o00[?), reference
data simulated from N5o(0, AMy).

—_1=1
— 1=5
—_— —1=20
[my 4 =100
32}
s 2
@ & 16t
5 S
z o 8
o [
a4l
a \\b—/‘
_—
ir L L L L L
15 2 4 8 16
scale parameter A scale parameter A
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Conclusions

@ Poisson transform: you can treat any data as coming from a
Poisson point process in the appropriate space, and infer the
intensity rather than the density.

e It is OK to treat the normalisation constant as a free
parameter!

o NCE effectively approximates the Poisson transform via logistic
regression.

@ Inference for unnormalised sequential models can be turned
into semi-parametric logistic regression

e True as well for unnormalised models with covariates

e For the same CPU budget (m simulations from reference
parameter), NCE should be more robust and and more
accurate that MCMC-MLE (and more convenient to use).
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