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Noise contrastive estimation
Poisson transform, asymptotics, comparison with MC-MLE

Nicolas Chopin (ENSAE)

(based on joint work with Simon Barthelmé, CNRS, Gipsa-LAB; and Lionel
Riou-Durand, ENSAE)
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Part I

Unnormalised statistical models
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Unnormalised statistical models

�Unnormalised� statistical models: models with an intractable

normalisation constant in the likelihood.

Popular in Machine Learning, Computer Vision (deep

learning), neuroscience.

Creates computational di�culties (�doubly intractable

problems� in Bayesian context).
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Unnormalised models: examples

Unnormalised models often correspond to some exponential family

pθ(y) =
exp

{
θTS(y)

}
Z (θ)

where Z (θ) is intractable. Examples follow.
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Example 1: Ising models

y = (y1, . . . , yn) where the yi 's are binary variables yi observed on

a lattice:

pθ(y) =
exp

{
α
∑

i yi + β
∑

i∼j 1(yi = yj)
}

Z (θ)

with θ = (α, β), Z (θ) is then a sum of 2n terms.
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Example 2: exponential random graphs (and networks)

pθ(y) =
exp

{
θTS(y)

}
Z (θ)

where y = (y1, . . . , yp), and yi = 1 if edge i in the network is

active; Z (θ) is then a sum of 2p terms, with p = n(n − 1)/2.
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Example 3: truncated Gaussian distribution

IID data-points y1, . . . , yn from a Gaussian distribution truncated to

]0,∞[d :

fµ,Σ(y) =
1

Z (µ,Σ)
exp

{
−(y − µ)TΣ−1(y − µ)

}
1]0,∞[d (y)

then Z (µ,Σ) is a d−dimensional integral which is di�cult to

approximate when d gets large.
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Unnormalised sequential models

Markov sequence y0, . . . , yn where the transition kernel is

de�ned up to a constant.

Example: sequential Ising

p(yt |yt−1, a,Q,R) ∝ exp
(
atyt + ytQyt + ytRyt−1

)
Nastier than IID version: n normalisation constants missing.
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Current strategies for inference

Classical estimation: MCMC-MLE (Geyer, 1994), contrastive

divergence (Bengio and Delalleau, 2009), noise-contrastive

divergence (Gutmann and Hyvärinen, 2012).

Bayesian: exchange algorithm (Murray et al., 2012), ABC,

russian roulette (Girolami et al., 2013).

I do not know of methods for sequential unnormalised models.
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Our contribution

Poisson transform shows you can treat the missing

normalisation constant as just another parameter. Gives you

an alternative likelihood function.

Applies to sequential problems as well.

Noise-contrastive divergence is an approximation of the

Poisson transform and we can now extend it to the sequential

setting.

Sequential estimation can be turned into a semiparametric

logistic regression problem.

Poisson transform simpli�es asymptotic theory and formal

comparison between methods.

Nicolas Chopin (ENSAE) Noise contrastive estimation



11/63

Part II

The Poisson transform
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Poisson point processes

Poisson processes are distributions over countable subsets of a

domain Ω (e.g., Ω = R for a temporal point process).

Let S be a realisation from a PP. For all (measurable) A ⊆ Ω,

the number of points of S in A follows a Poisson distribution

with parameter

λA = E (|S ∩ A|) =

∫
A
λ (y) dy

where λ (y) is the intensity function.
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Poisson point processes (II)

Let's assume that
∫

Ω λ (y) dy <∞, then

The cardinal of S is Poisson, with parameter
∫

Ω λ (y) dy <∞;

conditional on |S | = k , the elements of S are IID with density

∝ exp {λ(y)} .
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Poisson point processes (III)

The likelihood of a Poisson process is:

log p (S |λ) =
∑
yi∈S

log λ (yi )−
∫

Ω
λ (y) dy
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Poisson point processes (IV)

Consider S1 ∼ PP(λ1), S2 ∼ PP(λ2):

S1 ∪ S2 ∼ PP(λ1 + λ2)

a point y in S1 ∪ S2 originates from S1 with probability

λ1(y)

λ1(y) + λ2(y)
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The Poisson transform

Generalisation of the Poisson-Multinomial transform (Baker,

1994)

For estimation purposes, you can treat IID data in just about

any space as coming from a Poisson process.

New likelihood function: no loss of information, one extra

latent parameter.
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Theorem statement (I)

Data: y1, . . . , yn ∈ Ω, density p(y|θ) ∝ exp {fθ(y)}, so
log-likelihood is

L(θ) =
n∑

i=1

fθ(yi )− n log

∫
Ω
exp {fθ (y)} dy.

Poisson log-likelihood:

M (θ, ν) =
n∑

i=1

{fθ(yi ) + ν} − n

∫
Ω
exp {fθ (y) + ν} dy

i.e. log-likelihood of a PP with intensity λ(y) = fθ(y) + ν.
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Theorem statement (II)

Theorem

Let θ? = argmax
θ∈Θ

L (θ) and
(
θ̃, ν?

)
= argmax
θ∈Θ,ν∈R

M (θ, ν). Then

θ̃ = θ? and ν? = − log
(∫

exp {fθ? (y)} dy
)
.

In other words, the MLE can be computed by maximisingM (θ, ν)
in both variables. There is no loss of information. Also, asymptotic

con�dence intervals for θ are the same. The latent variable ν
�estimates� the normalisation constant.
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Proof

For �xed θ, maximiseM (θ, ν) wrt ν leads to:

ν?(θ) = − log

(∫
exp {fθ? (y)} dy

)
and

M(θ, ν?(θ)) = L(θ)− n.
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Extension to sequential models

The same logic can be applied to sequential models:

pθ(yt |yt−1) ∝ exp {fθ(yt , yt−1)}

We will apply the Poisson transform to each conditional

distribution.
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Extension to sequential models

Original log-likelihood of sequence:

L(θ) =
n∑

t=1

[
fθ(yt ; yt−1)− log

(∫
Ω
exp {fθ (y; yt−1)} dy

)]

Poisson-transformed log-likelihood:

M (θ,ν) =
n∑

t=1

{fθ(yt ; yt−1) + νt−1}−
∫

Ω

n∑
t=1

exp {fθ (y; yt−1) + νt−1} dy

We have introduced one latent variable νt per observation. Sum of

integrals becomes integral of a single sum.
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Extension to sequential models

Maximising the Poisson-transformed likelihood wrt (θ,ν), gives the
MLE for θ, and

ν?t−1 (θ?) = − log

(∫
exp {fθ? (y; yt−1)} dy

)
,

i.e. minus the log-marginalisation constant for the conditional

p(y|yt−1,θ?) ∝ exp {fθ?(y; yt−1)} .
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From parametric to semi-parametric inference

The value of the latent variables at the mode are a function of

yt−1 :

ν?t−1 (θ?) = − log

(∫
exp {fθ? (y; yt−1)} dy

)
= χ(yt−1).

If yt , yt′ are close, νt , νt−1 should be close as well, i.e., χ (y) is

(hopefully) smooth.

⇒ Do inference over χ: e.g. if you have n points but χ is well

captured by a spline basis with k � n components, use spline basis

instead. Poisson likelihood becomes:

M(θ, χ) =
n∑

t=1

{fθ(yt ; yt−1) + χ(yt−1)}

−
∫

Ω

n∑
t=1

exp {fθ (y; yt−1) + χ(yt−1)} dy
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Using the Poisson transform in practice

Back to the IID case: Poisson-transformed likelihood still involves

an intractable integral

M (θ, ν) =
n∑

i=1

{fθ(yi ) + ν} − n

∫
Ω
exp {fθ (y) + ν} dy

which we need to approximate.

Several ways, but an interesting one is to go through logistic

regression.
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Stochastic gradient descent

Before we go to logistic regression, note that another approach

would be to use Monte Carlo (importance sampling) to obtain an

unbiased estimate of the gradient:

1

n

∂

∂θ
M (θ, ν) =

1

n

n∑
i=1

∂

∂θ
f (yi ;θ)−

∫
Ω

∂

∂θ
f (yi ;θ)exp (fθ (y) + ν) dy

1

n

∂

∂ν
M (θ, ν) = 1−

∫
Ω
exp (fθ (y) + ν) dy

The we could use SGD (stochastic gradient descent) to maximise

M (θ, ν).
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Part III

The logistic trick & noise-contrastive

divergence
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The logistic trick

Idea: reduce an estimation problem to a classi�cation problem.

Several versions:

Logistic regression for density estimation: Hastie et al. (2003),
intensity estimation: Baddeley et al. (2010).
Logistic regression for normalisation constants: Geyer (1994).
Logistic regression for estimation in unnormalised models:
Gutmann and Hyvärinen (2012).

The last one is called �noise-contrastive divergence� by the

authors.
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The logistic trick

We have n random points from distributions p(y) and n points

from q(y). We note zi = 1 if the i-th point is from p, zi = 0

otherwise. Logistic regression models the log-odds ratio:

η(y) = log
p(z = 1|y)

p(z = 0|y)
.

We have that:

η(y) = log
p(y)

q(y)

⇒ provided q(y) is known, we can �rst estimate η (doing some

form of logistic regression), and then recover p(y) from η(y).
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From the logistic trick to noise-contrastive divergence

If we have a normalised model pθ(y) then we can run a logistic

regression with the following model for the log-odds:

η (y ;θ) = log pθ(y)− log q (y) .

If the model is unnormalised, pθ(y) ∝ exp {fθ(y)}, we introduce an

intercept in the logistic regression

η (y ;θ) = fθ(y) + ν − log q (y) .

This is the noise-contrastive divergence (NCD) technique of

Gutmann and Hyvärinen (2012).

Nicolas Chopin (ENSAE) Noise contrastive estimation



29/63

From the logistic trick to noise-contrastive divergence

If we have a normalised model pθ(y) then we can run a logistic

regression with the following model for the log-odds:

η (y ;θ) = log pθ(y)− log q (y) .

If the model is unnormalised, pθ(y) ∝ exp {fθ(y)}, we introduce an

intercept in the logistic regression

η (y ;θ) = fθ(y) + ν − log q (y) .

This is the noise-contrastive divergence (NCD) technique of

Gutmann and Hyvärinen (2012).

Nicolas Chopin (ENSAE) Noise contrastive estimation



30/63

Simple interpretation in terms of PP

We interpret y = (y1, . . . , yn) as the realisation of a PP with

intensity λ1(y) = n exp {fθ(y) + ν};
We interpret x = (x1, . . . , xm) as the realisation of a PP with

(known) intensity λ2(y) = mq(y);

We mix x and y , and then try to recover the probability that a

given point comes from the original data as

log
p

1− p
= log

λ1(y)

λ2(y)
= log

n

m
+ fθ(y) + ν − log q(y)

If fθ(y) = θTS(y) (exponential model), this is equivalent to a

basic logistic regression (with S(y) as covariate).
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Toy example: truncated exponential

Recall the truncated exponential model:

p(y |θ) ∝ exp (θy)

We produce reference samples from U(0, 1), so that the logistic

model for NCD is just:

η (y ; θ) = θy + ν

Fitting in R:

m <- glm(z~y+offset(logratio),data=df,family=binomial)
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Summary

Logistic trick: get a logistic classi�er to discriminate true data

from random reference data (from a known distribution). It

implicitly learns a model for the true data

NCD: in unnormalised models, introduce an intercept for the

missing normalisation constant

Our interpretation: NCD is an approximation of the

Poisson-transformed likelihood
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NCD approximates the Poisson transform

In NCD, you can introduce as many reference points (points

simulated from q) as you like.

Parametrise the log-odds by

η (y) = fθ(y) + ν + log
n

m
− log q(y)

where m is the number of reference points.

Theorem: as m→ +∞, the logistic log-likelihood Rm(θ, ν)
tends to the Poisson log-likelihoodM (θ, ν) (pointwise).

Nicolas Chopin (ENSAE) Noise contrastive estimation



34/63

NCD approximates the Poisson transform

To sum up: take your true n datapoints, add m random reference

datapoints, and estimate the model

pθ(y|θ) ∝ exp {fθ(y)}

using a logistic regression with log-odds

η (y) = fθ(y) + ν + log
n

m
− log q(y)

The intercept will be used to estimate the missing normalisation

constant. The technique is e�ectively a practical way of

approximating a Poisson-transformed likelihood.
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NCD for sequential models

The relationship between the Poisson transform and NCD shows

directly how to adapt NCD to sequential models: apply NCD to

each conditional distribution (the transition kernels)

Reference density q(y) becomes a reference kernel q (yt |yt−1)

Include an intercept νt per conditional distribution
p(yt |yt−1,θ)
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Truncated exponential, revisited

We turn our previous example into a Markov chain:

p(yt |yt−1, θ) ∝ exp (θytyt−1)
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Truncated exponential, revisited

Consider the NCD approximation for �xed yt−1. The model for the

log-odds will take the form:

η (yt) = θytyt−1 + νt−1 + log
n

m
− log q(yt |yt−1)

This leads to a linear logistic regression with ytyt−1 as a covariate.
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Parametric vs. semi-parametric model

It is wasteful to �t a separate intercept per time-point. As in the

semi-parametric version of the Poisson transform, we can use:

η (yt) = θytyt−1 + χ (yt−1) + log
n

nr
− log q(yt |yt−1)

where χ (yt−1) will be �tted using splines.
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In practice (I)

Positive examples are given by:
Value at time t − 1 Value at time t Label

y1 y2 1

y2 y3 1
...

...
...

yn−1 yn 1
While negative examples are given by:
Value at time t − 1 Value at time t Label

y1 r2 0

y2 r3 0
...

...
...

yn−1 rn 0
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In practice (II)

We can �t the (semi-parametric) model via:

m <- gam(label ~ I(y_t*y_tminusone)+s(y_tminusone),data=df,family="binomial")

The fully parametric model corresponds to:

m <- gam(label ~ I(y_t*y_tminusone)+as.factor(y_tminusone),data=df,family="binomial")
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Parametric vs. semi-parametric model
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Part IV

Application: LATKES
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Data

Figure: A sequence of eye movements extracted from the dataset of
Kienzle et al. (2009). Fixation locations are in red and successive
locations are linked by a straight line.

Eye movements recorded while 14 subjects where exploring a set of

photographs (Fig. 1); each contributing between 600 and 2,000

datapoints.
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LATKES

LATKES: Log-Additive Transition Kernels. A class of spatial

Markov chain models, with applications to eye movement data:

p(yt |yt−1, . . . , yt−k) ∝ exp
{∑

βivi (yt) + g(yt , yt−1, . . . , yt−k)
}

where y1 . . . yt are spatial locations (e.g. on a screen), vi (y) are

spatial covariates, g(...) is an interaction kernel.
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Fitting LATKES using logistic regression

Transition kernel only speci�ed up to normalisation constant.

Can use sequential version of NCD to turn the problem into

(semiparametric) logistic regression.

Standard packages can be used (mgcv, INLA).
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Example

We �t the model:

p(yt |yt−1) ∝ exp {b(||yt ||) + rdist (||yt − yt−1||) + rang (∠ (yt − yt−1))}

where:

b(||yt ||) should re�ect a centrality bias;

rdist (||yt − yt−1||) should re�ect the fact that successive

�xations are close together;

rang (∠ (yt − yt−1)) should re�ect a tendency for making

movements along the cardinal axes (vertical and horizontal).
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Note on NCD implementation

We �tted functions b, rdist and rang (plus the log-normalising

constant χ, as already explained) using smoothing splines.

(Extension of NCD to smoothing splines is direct: simply add

appropriate penalty to log-likelihood).

We used R package mgcv (Wood, 2006).

Reference points were sampled from an Uniform distribution

(over the screen); 20 reference datapoints per datapoint.

Requires one line of code of R, took about 5 minutes.
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Results
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Figure: The di�erent panels display the estimated e�ects of saccade angle
(rang ), distance to previous �xation (rdist) and centrality bias (s).
Individual subjects are in gray, and the group average is in blue.
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Asymptotics
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Inspiration: MCMC-MLE

From now on, we focus on the IID case: y1, . . . , yn have density

∝ hθ(y)
∆
= exp {fθ(y)}. Up to a linear transformation, the

log-likelihood is:

1

n

n∑
i=1

{fθ(yi )− fψ(yi )} − log
Z (θ)

Z (ψ)

where ψ is arbitrary. MCMC-MLE (Geyer, 1994): runs MCMC to

sample M points xm from ∝ exp {fψ(y)}, use importance sampling

to approximate second term

1

m

m∑
j=1

hθ(xm)

hψ(xm)
≈ Z (θ)

Z (ψ)

(since Z (θ) =
∫
hθ(y) dy) then maximise:

`ISn,m(θ) =
1

n

n∑
i=1

{fθ(yi )− fψ(yi )} − log

 1

m

m∑
j=1

hθ(xm)

hψ(xm)


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Objective

Clearly NCE and MCMC-MLE have a lot in common: both generate

M �fake� data-points from the model with θ = ψ, and both

maximise some pseudo-likelihood. How to compare them formally?
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Comparing the maximisers of three (pseudo-)likelihoods

θ̂n = arg max `n(θ) =
1

n

n∑
i=1

{fθ(yi )− fψ(yi )} − log
Z (θ)

Z (ψ)

θ̂ISn,m = arg max `ISn,m(θ) =
1

n

n∑
i=1

{fθ(yi )− fψ(yi )} − log

 1

m

m∑
j=1

hθ(xm)

hψ(xm)


(θ̂NCEn,m , ν̂) = arg max `NCEn,m (θ, ν) =

n∑
i=1

log qθ,ν(yi ) +
n∑

i=1

log {1− qθ,ν(yi )}

with

log

{
qθ,η(y)

1− qθ,η(y)

}
= fθ(y)− fψ(y) + η + log

( n

m

)
s
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Dealing with di�erent parameter spaces

It is convenient to de�ne all these functions with respect to the

extended parameter space ξ = (θ, ν) ∈ Θ× R+. To do so:

1 We use the Poisson transform for the true log-likelihood:

`n(θ, η) =
1

n

n∑
i=1

{fθ(yi )− fψ(yi )}+ η − eν × Z (θ)

Z (ψ)

2 We de�ne a similar Poisson transform for the MCMC-MLE

likelihood.

All the derivations are done in terms of ξ, but for your convenience,
I will state the results in terms of θ.
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Asymptotic regime?

Geyer (1994) takes y1, . . . , yn �xed, and show that θ̂ISn,m → θ̂n
as m→ +∞.

Gutmann and Hyvärinen (2012) take m = τn, and show that

θ̂NCEn,m → θ? as m, n→ +∞.
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Monte Carlo error

Th 1

For y1, . . . , yn �xed, and some constant c , under conditions similar

to Geyer (1994)

m(θ̂NCEn,m − θ̂ISn,m) →
m→∞

c .
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Implications

Geyer (1994) showed that, under very mild assumptions (e.g.

allowing the xm's to be generated by MCMC), θ̂ISn,m is a consistent,

asymptotically normal estimator of the true MLE θ̂n. Our result
implies that θ̂NCEn,m has exactly the same properties, since it is at

m−1 distance from θ̂ISn,m.
Note: Geyer (1994)'s proof is based on concepts such as

hypoconvergence (the weakest form of convergence of functions

that ensures that maximisers also converge).
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Overall error

Th 2

Let m = τn, and take, m, n→ +∞ (for τ �xed). Under mild

assumptions (MCMC sampling),

√
n
(
θ̂ISn,m − θ?

)
D→ N (0d ,V

IS
τ )

√
n
(
θ̂NCEn,m − θ?

)
D→ N (0d ,V

NCE
τ )
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Asymptotic variance comparison

Th 3

Under IID sampling (for the x
′
j s), for any τ > 0, and any ψ,

VNCE
τ ≤ V IS

τ .
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Numerical comparison

Model: y1, . . . , yn ∼ N>0(µ,Σ) (truncated to ]0,+∞[d), reference
data simulated from N>0(0, λId).
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Conclusions

Poisson transform: you can treat any data as coming from a

Poisson point process in the appropriate space, and infer the

intensity rather than the density.

It is OK to treat the normalisation constant as a free

parameter!

NCE e�ectively approximates the Poisson transform via logistic

regression.

Inference for unnormalised sequential models can be turned

into semi-parametric logistic regression

True as well for unnormalised models with covariates

For the same CPU budget (m simulations from reference

parameter), NCE should be more robust and and more

accurate that MCMC-MLE (and more convenient to use).
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