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Statistics 0.1 : Density Fitting
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We fit a parametric
family of densities
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We stop when there
is a'good fit.



Maximum Likelihood Estimation

ON AN ABSOLUTE CRITERION
FOR FITTING FREQUENCY CURVES.

By K. A. Fisher, Gonville and Caius College, Cambuidge.

1. IF we set ourselves the problem, in its
frequent ocenrrence, of finding the arbitrary
function of known form, which best suit a
observations, we are mect at the outset by
which appears to invalidate any results we m

1
— ]
%leae})( N Z V6 Pe

1=1

POauer”



Maximum Likelihood Estimation

ON AN ABSOLUTE CRITERION
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Maximum Likelihood Estimation

Equivalent to a KL projection in
the space of probability measures




Maximum Likelihood Estimation
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the space of probability measures




In higher dimensional spaces...

»
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(zenerative Models

g : latent space — data space
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(zenerative Models

fo : latent space — data space
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Goal: find @ such that fgsp fits vgata
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(zenerative Models

c—————

fo : latent space — data space

latent

space

data space

Difference between fitting
Jospr vs. a density pg?
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fo : latent space — data space
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Need a more flexible discrepancy
function to compare Vgat, and fogpe
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Workarounds?
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* Formulation as adversarial problem [GPM...’14]

| A 1 atas —1
€0 classifiors g 0Yg ((fourt, +1), (Vdata, —1))

e Use a metric A for probability measures, that can
handle measures with non-overlapping supports:

3“6%1 A (Vdata, Po), nNot gﬂéig KL(Vqatal|Po)
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Minimum Kantorovich Estimation

* Use optimal transport theory, namely Wasserstein
distances to define discrepancy A\.

n W(vqata,
min (Vdata, fos b)

* Optimal transport? fertile field in mathematics.

Monge Kantorovich Koopmans Dantzig Brenier McCann Villani

Nobel '75 Fields '10
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What is Optimal Transport?

The natural geometry for probability measures
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What is Optimal Transport?

The natural geometry for probability measures
supported on a geometric space.

Statistical Models of Features
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What is Optimal Transport?

The natural geometry for probability measures
supported on a geometric space.

(renerative
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What is Optimal Transport?

The natural geometry for probability measures
supported on a geometric space.
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Origins: Monge Problem (1781)

6(“5? MEémoIrEs DE L'AcADEMIE ROYALE
. el SUR L A4

TEORIE DES DEBLAIS

FT DES REMBLAILL
—

Pr M. M oN~N GE.

I orsQU’oN doit tranfporter des terres d'un lieu dans un
aqutre, on a coutume de donner ie nom de Déblai au

volume des terres que T'on doit tranfporter, & le nom de
Remblai 3 Vefpace qu’elles doivent occuper apres le tranfport.
20



Origins: Monge Problem
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Origins: Monge Problem

In the 21st Century...
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Origins: Monge’s Problem

In 1781 however...
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Origins: Monge’s Problem

In 1781 however...

p(x) /
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Origins: Monge’s Problem

T must map red to blue.
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Origins: Monge’s Problem
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Origins: Monge’s Problem

T must map red to blue.

a ~(B) = {z|T(x) € B}

™\

B
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Origins: Monge’s Problem

T must map red to blue.

H T-1(B) = {z|T(x) € B}
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Origins: Monge’s Problem

T must map red to blue.

=1z|T'(z) € B}
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Origins: Monge’s Problem

T must map red to blue.

T-1(B) = {z|T(z) € B}

|
i

lez Ag
pu(Az) + pn(Az) + p(Asz) = v(B)
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Origins: Monge’s Problem

T must map red to blue.
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Origins: Monge’s Problem

T must push-forward the red measure towards the blue




Origins: Monge’s Problem

T must push-forward the red measure towards the blue

What 1" s.t. Typ = v
minimizes [ D(x,T(z))p(dz)?

23




Monge Problem

() a probability space, ¢ : {2 x )} — R.
1, v two probability measures in P(€2).

[Monge’81] problem: find a map 71" : {2 — (2

in /Q c(z, T(2)) u(dx)

Ty p=v




Monge Problem

() a probability space, ¢ : {2 x )} — R.
1, v two probability measures in P(€2).

[Monge’81] problem: find a map 71" : {2 — (2
[Brenier'87] If Q =R% c= |- — - |°,
1, v a.c., then I' = Vu, u convex.




Monge Problem

() a probability space, ¢ : {2 x )} — R.
1, v two probability measures in P(€2).
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in /Q c(z, T(2)) u(dx)
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Monge Problem

() a probability space, ¢ : {2 x )} — R.
1, v two probability measures in P(€2).

[Monge’81]} problem find a map 1" : {2 — ()
inf 1 (dx)

Ty = 1/

/\L--.L.




| Kantorovich’42| Relaxation

e Instead of maps 1" : () — (2, consider
probabilistic maps, i.e. couplings PP & P(Q X Q):

(e, v) S{P € P(Q x Q)|VA, B C Q.
P(A X Q) p(A),
P x B) =v(B)}

20



| Kantorovich’42| Relaxation

(p,v) S{P € P(Q x Q)|VA, B C Q,

P(A x Q) = u(A), P(Q x B) = v(B)}




| Kantorovich’42| Relaxation

(p,v) S{P € P(Q x Q)|VA, B C Q,

P(A x Q) = u(A), P(Q x B) = v(B)}




Kantorovich Problem

Def. Given p,v in P(£1); a cost function
c on {2 x {2, the Kantorovich problem is

inf / / c(z,y)P(dz, dy).

Pell(p,v)

28



Kantorovich Problem

Def. Given p,v in P(£1); a cost function
c on {2 x {2, the Kantorovich problem is

inf / / c(z,y)P(dz, dy).

Pell(p,v)

Sup /godu+/¢du.
pE€L1(p),pEL(v)
e (z)+1(y)<c(z,y)

28



(Kantorovich) Wasserstein Distances

Let p > 1. Let ¢ := D, a metric.

Def. The p-Wasserstein distance between

L, v in P() is

1/p
def :
Wy, v) = (Peg%a ) / D(w,y)pP(da?,dy)> -

29




(Kantorovich) Wasserstein Distances

Let p > 1. Let ¢ := D, a metric.

Def. The p-Wasserstein distance between

L, v in P() is

. i
inf D(z,y)°P(dz. d |
ot [ [ DG,y P y>)
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Optimal Transport Geometry

Very different geometry than standard
information divergences (KL, Euclidean)

| 4
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Optimal Transport Geometry

Very different geometry than standard
information divergences (KL, Euclidean)

| 4

Wasserstein Distance
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Optimal Transport Geometry

Very different geometry than standard
information divergences (KL, Euclidean)

| 4

Inte rpol ant
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Optimal Transport Geometry

Very different geometry than standard
information divergences (KL, Euclidean)

Linear interpolation ﬁ Optimal transport interpolation




Optimal Transport Geometry

Very different geometry than standard
information divergences (KL, Euclidean)




Optimal Transport Geometry

Very different geometry than standard
information divergences (KL, Euclidean)

- D0

Barycenter

- - [Agueb’1l
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Optimal Transport Geometry

A~

AW

A E D3

Wasserstein mean Ly mean
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Optimal Transport Geometry

A~

AW

A E D3

Wasserstein mean Ly mean
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Computational OT

Up to 2010: OT solvers W, (p,v) =7

Goal now: use OT as a loss or fidelity term

argmin F'(Wp, (1, v1), Wy (i, v2), ..o p) =7
pneP(£2)

vuwp(p’v Vl) =7

33



How can we compute OT?

Discrete - Discrete

A

1] 1

ai

Discrete - Continuous




How can we compute OT?

Discrete - Discrete

1] 1

[Mérigot’ 11][K1tagaia’16][Levy’15}w -

Continuous - Continuous

- Network flow solvers

- (Entropic) regularization

ai

—
—
- —
—_

Discrete - Continuous

Stochastic
Optimization

—
—
-
—
——
———

[Benamou’98]



OT on Two Discrete Measures




OT on Two Discrete Measures




Wasserstein on Discrete Measures

Consider 1 = Z a;0,, and v = Z b0y, .
1—=1 71=1
det

Mxy = |D(xi,y;)"]i;
U(a,b) < {P ¢ R"*"™|P1,, = a,PT1, = b}

Detf. Optimal Transport Problem

P — ] P, M
Wp (l’l'v V) PEIgl(I(},,b)< » LV XY >

36




Solving the OT Problem

Mxy




Solving the OT Problem

. min cost flow solver
Mxy S used in practice. /'\
O(n”log(n)) =

U(a,b)
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Solving the OT Problem

. min cost flow solver
My S used in practice. /'\
/ O(n°log(n)) =
' Ua,b)

' Solution P unstable
and not always unique.
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and not always unique.
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Solving the OT Problem
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Solving the OT Problem

min cost flow solver
Mx ¥ used in practice. /'\
O(n”log(n)) =
Uab)

' Solution P unstable
and not always unique.
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Solving the OT Problem

min cost flow solver
Mx ¥ used in practice. /'\
O(n”log(n)) =
Uab)

' Solution P™ unstable
and not always unique.

0“
‘0
’0
P ’.

WP(u,v) not differentiable.

39



Solution: Regularization

U(a,b)

Wishlist:
faster & scalable, more stable,

differentiable

40



Entropic Regularization [Wilson’62]

Def. Regularized Wasserstein, v > 0

det :
W, — P. M —~vE(P
’Y(N’v V) PEHUl'l(I(},,b)< 9 XY > Y ( )

det —
E(P) = — Z sz(lOng — 1)

2,)=1

Note: Unique optimal solution because of strong concavity of entropy
41




Entropic Regularization [Wilson’62]

def
W’y(ua V) —

min
PeU(a,b)

Def. Regularized Wasserstein, v > 0
<P7MXY> _ ”VE(P)

ANrv A A NN

J
iz P,

\

\

Note: Unique optimal solution because of strong concavity of entropy

41
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Entropic Regularization [Wilson’62]

def
W’y(ua V) —

min
PeU(a,b)

Def. Regularized Wasserstein, v > 0
<P7MXY> _ ”VE(P)

ANrv A A AN

<

\

\

Note: Unique optimal solution because of strong concavity of entropy

41
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Fast & Scalable Algorithm

det

Prop. If P, = argmin (P, Mxy )—vE(P)

then -

lu € R,

PcU (a,b)
v € R, such that

P, = diag(u)Kdiag(v), K e~ Mxy /7

42




Fast & Scalable Algorithm

Prop. If P, = argmin (P, Mxy )—~vFE(P)

PcU (a,b)
then Jlu € R, v € R, such that

L(P,Oz,ﬁ) — ZP’L]MZ] SN ’}/PZJ(IOgPZ] — 1) -+ aT(Pl — (L) (N BT(PT]_ — b)
]
aL/an — Mij —+ ’)/lOg Pfij + o + 5]'

o;  Mi; By
(BL/QPm:O) =>Pij:€7 e 7 eV =u, Kij’vj

42



Fast & Scalable Algorithm

Prop.

then -

P, =

If P, < argmin (P, Mxy )—vE(P)

PeU(a,b)
lu € R, v € R, such that

diag(u)Kdiag(v), K T e~ Mxv /7

P, EU(a,b)@{

diag(u)Kdiag(v)l,, =a
diag(v)K " diag(u)1l,, =b
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Fast & Scalable Algorithm

Prop.

then -

P, =

If P, < argmin (P, Mxy )—vE(P)

PeU(a,b)
lu € R, v € R, such that

diag(u)Kdiag(v), K T e~ Mxv /7

P, EU(a,b)@{

diag(u)Kdiag(v)l,, =a

diag(v)K'diag(u)l,, =0b
\———

wu
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Fast & Scalable Algorithm

Prop.

then -

P, =

If P, < argmin (P, Mxy )—vE(P)

PeU(a,b)
lu € R, v € R, such that

diag(u)Kdiag(v), K T e~ Mxv /7

P, EU(a,b)@{

(¥

e
diag(u)Kdiag(v)l,, =a
diag(v)K'diag(u)l,, =0b

\———

wu
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Fast & Scalable Algorithm

Prop.

then -

P, =

If P, < argmin (P, Mxy )—vE(P)

PeU(a,b)
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Fast & Scalable Algorithm

Prop.

then -

P, =

If P, = argmin (P, Mxy )—~vFE(P)

PeU(a,b)
lu € R, v € R, such that

diag(u)Kdiag(v), K T e~ Mxv /7

P, EU(a,b)@{

u ® Ko = a
v o K'u —
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Fast & Scalable Algorithm

then -

det

lu € R,

Prop. If P, = argmin (P, Mxy )—vE(P)

PcU (a,b)
v € R, such that

P, = diag(u)Kdiag(v), K e~ Mxy /7

P, EU(a,b)@{

u=a/Kv
v=b/K"u

43




Fast & Scalable Algorithm

Sinkhorn’s Algorithm : Repeat
1. u=a/Kv
> v=b/K"u

43



Fast & Scalable Algorithm

Sinkhorn’s Algorithm : Repeat
1. u=a/Kv
> v=b/K"'u

* [Sinkhorn’64| proved convergence for the first time.
* [Lorenz’89] linear convergence, see |[Altschuler’17]

e O (nm) complexity, GPGPU parallel [Cuturi’13].

e O(n log mn) on gridded spaces using convolutions.
[Solomon’15]
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Fast & Scalable Algorithm

e [Sinkhorn’64] fixed-point iterations for (¢, V)
u+—a/Kv, v+<b/K u

a b
I Vo

K
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Fast & Scalable Algorithm

e [Sinkhorn’64] fixed-point iterations for (¢, V)
u+a/Kv, v+ b/K'u V1
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Fast & Scalable Algorithm

e [Sinkhorn’64] fixed-point iterations for (¢, V)
u+—a/Kv, v+<b/K u

us

a b a
| i

b

K

H
™~~~
=
~

45




Fast & Scalable Algorithm
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Fast & Scalable Algorithm

e [Sinkhorn’64] fixed-point iterations for (¢, V)

u+a/Kv, v+ b/K'u Vo
a b a
| iE
eic....
b us
K
— / K1t




* [Sinkhorn’64] fixed-point iterations.

ii
K

Fast & Scalable Algorithm

PLZ

diag(ur)

K

N\

diag(vr)

°
W
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Fast & Scalable Algorithm

* [Sinkhorn’64] fixed-point iterations.

ii
K

" diag(vr)

diag(ur)
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Also embarrassingly parallel

e |[Sinkhorn’64| with matrix tixed-point iterations

A

B
K
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Also embarrassingly parallel
e |[Sinkhorn’64| with matrix tixed-point iterations
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Also embarrassingly parallel

e [Sinkhorn’ '
orn’64] with matrix fixed-point iterations
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Also embarrassingly parallel
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Also embarrassingly parallel

e |[Sinkhorn’64| with matrix tixed-point iterations

A
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Ditfferentiability of W

W(a, X),(b,Y))




Ditfferentiability of W

W((a + Aa, X),(b,Y)) = W((a, X), (b, Y))+77




Ditfferentiability of W

W((a + Aa, X),(b,Y)) = W((a, X), (b, Y))+77




Sinkhorn > Differentiability

W((a, X + AX),(b,Y)) =W((a, X),(b,Y))+77




Sinkhorn > Differentiability

W((a, X + AX),(b,Y)) =W((a, X),(b,Y))+77




Sinkhorn: A Programmer View

Def. For L > 1, define

def
WL(H’?’/) — <PL7MXY >7

C—10+1
Sinkhorn /=1,...,L —1

50




Sinkhorn: A Programmer View

Def. For L > 1, define

WL(“’? V) d§f<PL7 MXY >7

Prop. %VL/(L, ag{; L can be computed recur-

sively, in O(L) kernel K xvector products.

[Hashimoto’lﬁ][Bonneel’lg][Shalit’IG][Flammary’lﬁ]



OT: Barycenters




OT: Barycenters

N

AWy (1, v
uén?’l?ﬂ) (H22)

=1

Wasserstein
o> ~__ Barycenter
" |Agueh’ll]

— e
- i
-
.. B
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OT: Barycenters

Very different geometry than standard
information divergences (KL, Euclidean)

|[Solomon’15]

52



OT: Barycenters

Very different geometry than standard
information divergences (KL, Euclidean)

|[Solomon’15]
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OT: Dictionary Learning

: N K i
1111 Dima W (b,,;, 2 k=1 Akak)

AE(En)K 7AE(EK)N

Data samples Data samples

0.1 0.1
:298
0.08| - 0.08 —b100
0.06; 1 0.06;
0.04; 1 0.04;
0.02; 1 0.02¢
0 0

_6 0 5

|[Sandler’11] [Z(Sean’14] |Rolet’16]



OT: Dictionary Learning

min Zi\;l W (b’iv Zle AZ“I«)

AE(En)KaAE(EK)N

Wasserstein NMF
0.1 , ' ,

008 i —CL2: |

0.06}

0.04

0.02 ¢

0 \-.L

0.1

0.08¢

0.06 |
0.04
0.02}

0

K. NMF

e (1 1

/\J.__u[\\

[Sandler’ll] [Zen’14] [Rolet 16]




(Word Mover’s Distance)

document 1

Obama
speaks
to
the
media
In
Illinois

| Kusner’l5]

O l-L ‘gl‘.eets,
‘Obama’ L
“he
‘President’ SPEAks
“Chicago’
o ‘media’
o o0

“Ilinois’ ‘press’

word2vec embedding

o4

document 2

The
President
oreets
the
press
In
Chicago

diSt(Dl, DQ) — WQ ([1,, I/)




Topic Models
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Wasserstein Inverse Problems

P3 ‘

b S

o
_ )

_ F
- P ¢
o .-_-‘\
27|
| :

L

&~

A

S
v o A

X

X

X

N

Euclidean Simplex: {ZL] AiDi, A € 23}

Wasserstein simplex: {P(A), A € X3}



Application: Volume Reconstruction

Gak

Shape database Projection
Input shape Iso-surface
(p1a°°°ap5) P ped P()\)

|Bonneel’16]
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Application: Brain Mapping

Original Euclidean Wasserstein
projection projection
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Application: Brain Mapping

-]

%

Original Euclidean Wasserstein
projection projection
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Application: W Dictionary Learning

min L (bi,lS’Azl-c (ak))

Ac(Zp)  Ae(Er)N 2




Application: W Dictionary Learning

min L (bi,BAz (ak))

Ac(Zp)  Ae(Er)N 2




Learning with a Wasserstein Loss

Dataset {(z;,y:)},z: € RP,y; € R?

husky
sSNow
sled

slope
men

Yi

Goal is to find fg : Images — Labels
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Learning with a Wasserstein Loss
N

min . L(fo(xi), i)

1=1

husky
sSNow
sled

slope
men

Yi

Which loss £ could we use?
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Learning with a Wasserstein Loss

N
min L(fo(x:),y:)
1=1

4o husky
ari J SNOW
ver o0
winter SSIope
e men

f@ (37@) Yi

Which loss £ could we use?
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Learning with a Wasserstein Loss
N

min . L(fo(xi), i)

1=1

L(a,b) = Préllégm<P, M) + eKL(P1,a)

+ ¢KL(P'1,b) — vE(P)

1. Generalizes Word Mover’s to label clouds
2.Sinkhorn algorithm can be generalized

|Frogner’15] [Chizat’15][Chizat’16]
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Minimum Kantorovich Estimators

in W (vqata,
min (Vdata, fos1t)

[ Bassetti’06] 1st reference discussing this approach.

Challenge: VoW (Vdata, fosit)?

|[Montavon’l6] use regularized OT in a finite setting.
|Arjovsky’17] (WGAN) uses a NN to approximate dual

solutions and recover gradient w.r.t. parameter
|Bernton’17] reject mechanism W(sample, data)

|Genevay’l7, Salimans’17] (Sinkhorn approach)



Proposal: Autodift OT using Sinkhorn

Approximate W loss by the transport cost
W atter L Sinkhorn iterations.

| e—C/s

(C O K)br,ar)

9, — (' |— K

Vi

-y Yn)

V.

XnK

1m_ﬁ§}@+

by

v
xmK "

1/ bé—l—l "EL (0)

Ag4+1

(yl,..

Input data

{0 +1

Generative model

64

Sinkhorn /(=1

ooooo

|GPC’17]



MNIST, Learning fo

Example

,//I////./J.J,‘/’aqqolhlulvlm\
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Example: Generation of Images

m {F!

A REEES =
P ug

,‘ .:": iu-hx_g_‘. __:
| REETA e
I Ep’ “"5‘ =

.J 91y

'v’ l-'

'
‘\'w ,

I\/II\/ID GAN

* Learning with CIFAR-10 images

* In these examples the cost function is also learned
adversarially, as a NN mapping onto feature
vectors.
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Example: Generation of Images

B0 | e |- PR
R R Ay
SR,
eyt = R REREEN
Flae < o KNS
A e 3
Pl g PP
o L T TP
i o SRE TS
= R . il

arxiv.org/pdf/1710.05488 67




ion of Images

. (Fenerat

Example

arxiv.org/pdf/1710.05488



Concluding Remarks

e Regularized OT 1s much faster than OT.

® Regularized OT can interpolate between W and the
MMD / Energy distance metrics.

* The solution of regularized OT is “auto-differentiable’.

* Many open problems remain!
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