

Optimal Transport in Data Sciences: Why and How?

Marco Cuturi

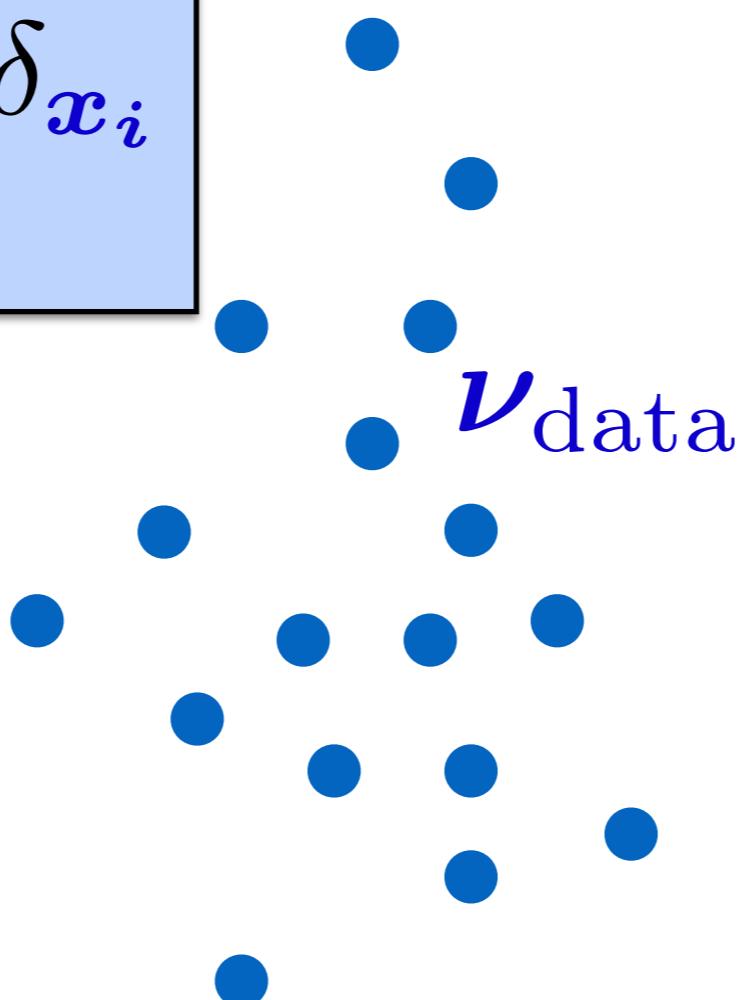
Joint work with
G. Peyré, F. Bach, A. Genevay (ENS)
N. Bonneel (INRIA) A. Rolet (Kyoto) J. Solomon (MIT)

<https://optimaltransport.github.io/>

Statistics 0.1 : Density Fitting

We collect data

$$\nu_{\text{data}} = \frac{1}{N} \sum_{i=1}^N \delta_{\mathbf{x}_i}$$



Statistics 0.1 : Density Fitting

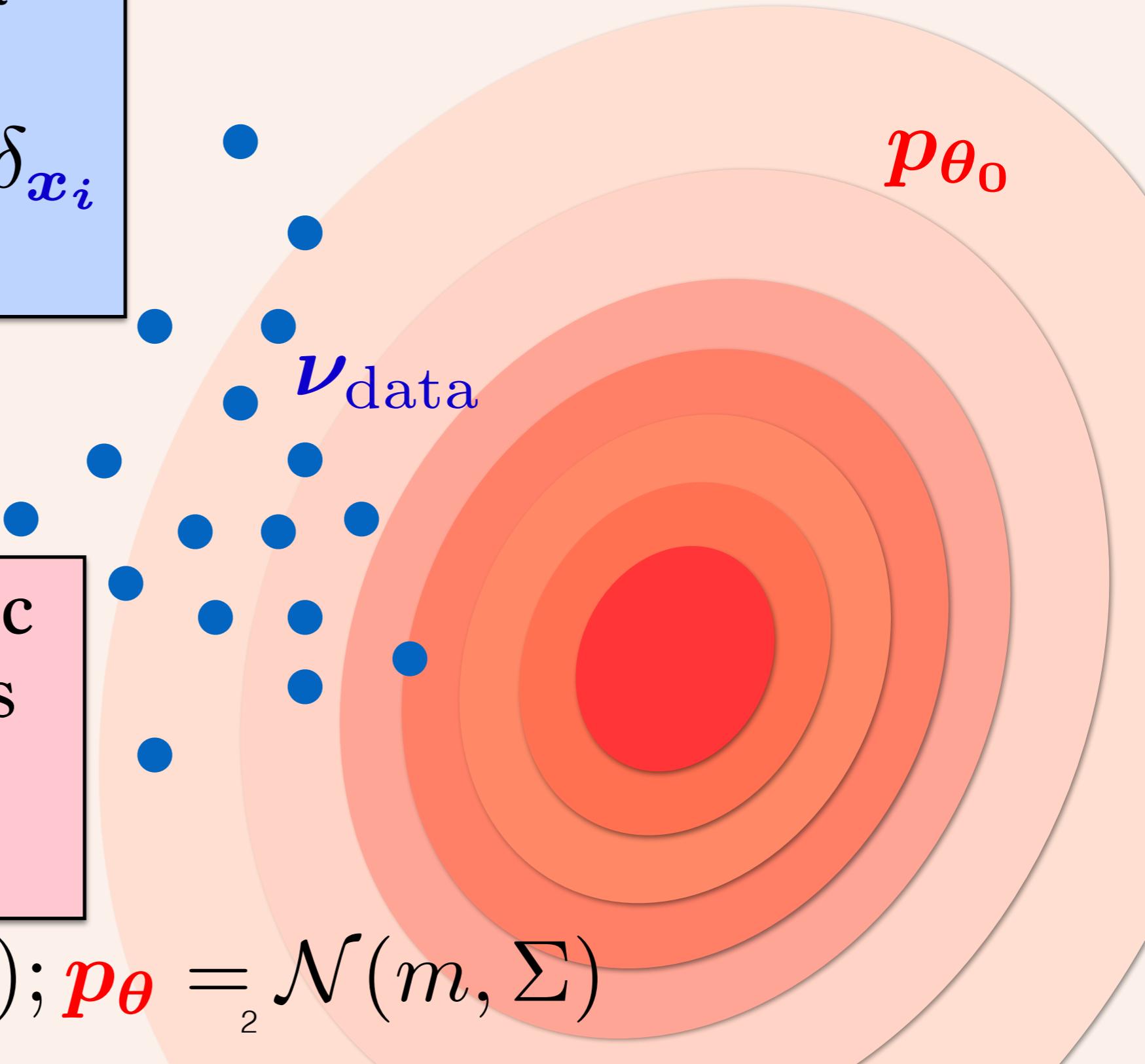
We collect data

$$\nu_{\text{data}} = \frac{1}{N} \sum_{i=1}^N \delta_{\mathbf{x}_i}$$

We fit a parametric family of densities

$$\{p_{\theta}, \theta \in \Theta\}$$

e.g. $\theta = (m, \Sigma)$; $p_{\theta} = \mathcal{N}_2(m, \Sigma)$

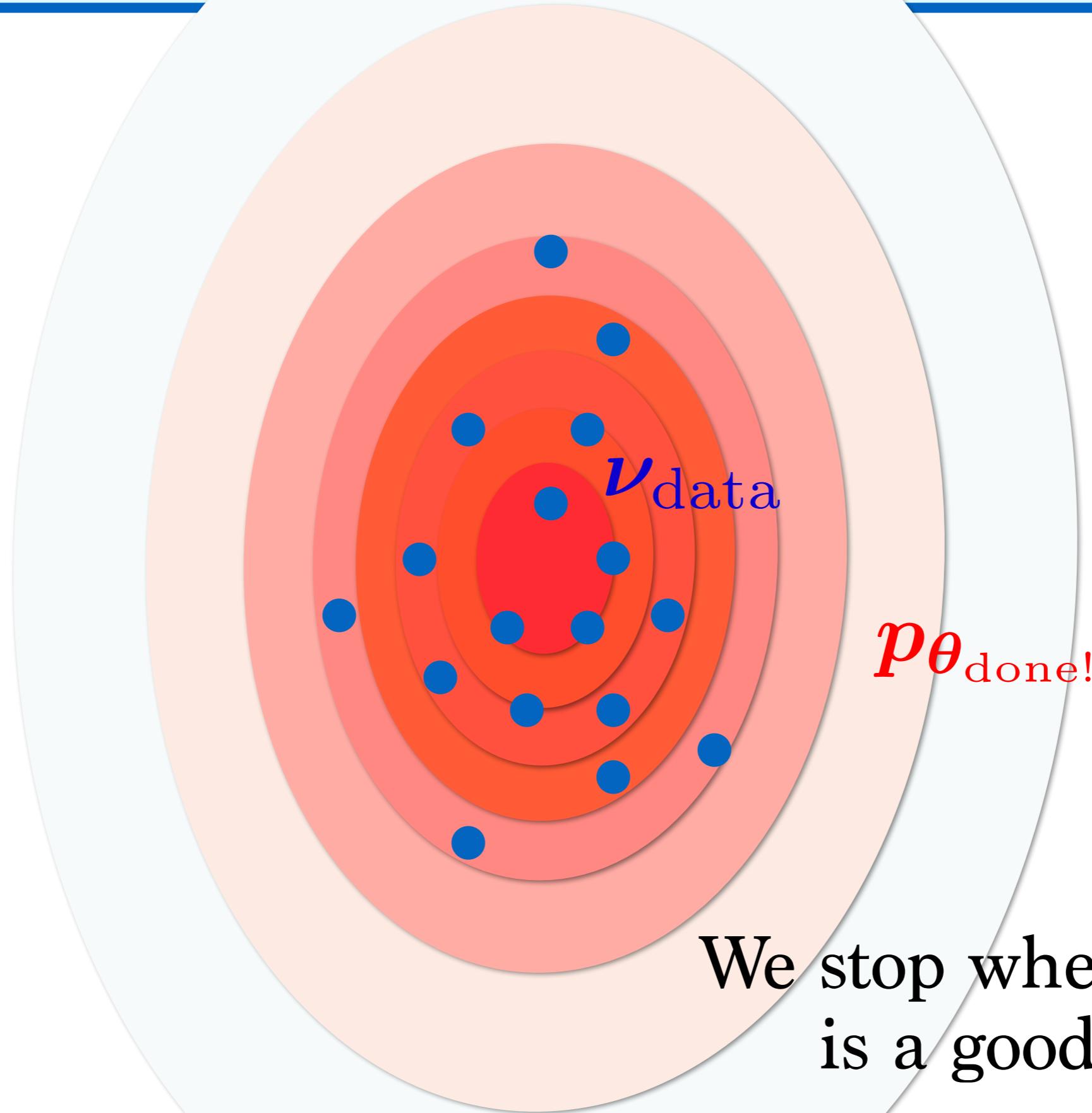


Density Fitting

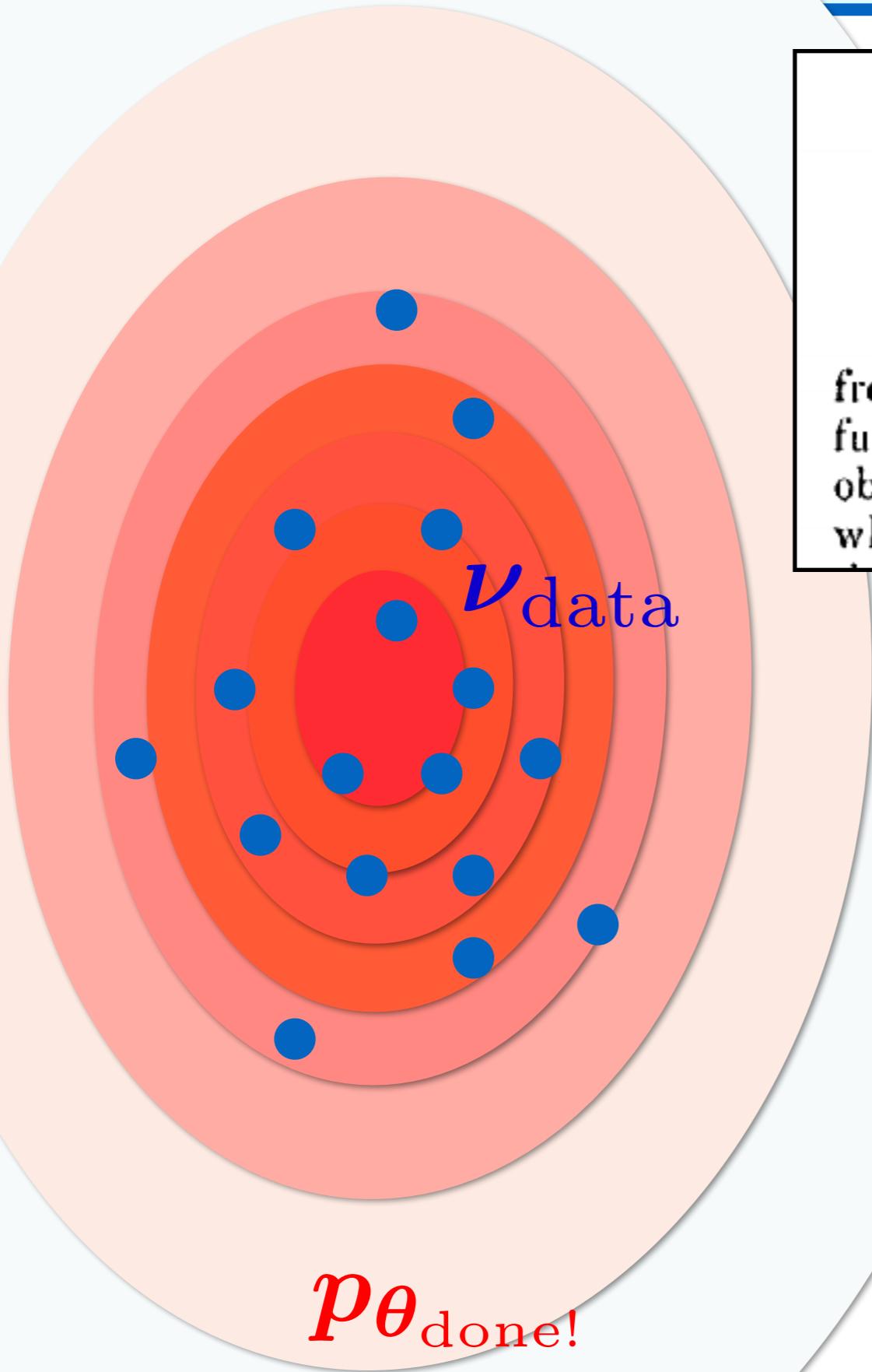
p_{θ_1}

ν_{data}

Density Fitting



Maximum Likelihood Estimation



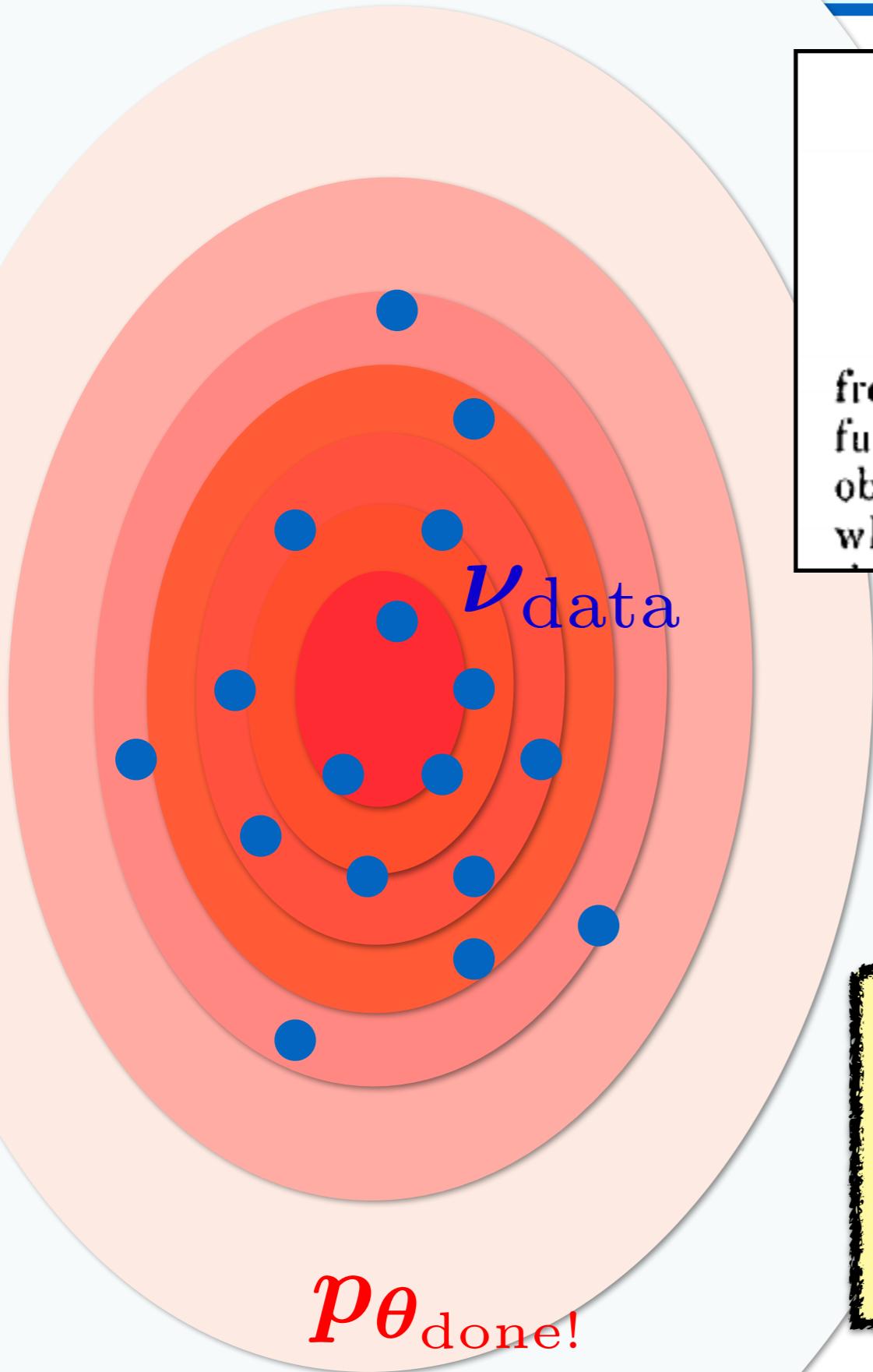
ON AN ABSOLUTE CRITERION
FOR FITTING FREQUENCY CURVES.

By *R. A. Fisher*, Gonville and Caius College, Cambridge.

1. If we set ourselves the problem, in its frequent occurrence, of finding the arbitrary function of known form, which best suit a observations, we are met at the outset by an which appears to invalidate any results we ma

$$\max_{\theta \in \Theta} \frac{1}{N} \sum_{i=1}^N \log p_{\theta}(x_i)$$

Maximum Likelihood Estimation



ON AN ABSOLUTE CRITERION
FOR FITTING FREQUENCY CURVES.

By *R. A. Fisher*, Gonville and Caius College, Cambridge.

1. If we set ourselves the problem, in its frequent occurrence, of finding the arbitrary function of known form, which best suit a observations, we are met at the outset by an which appears to invalidate any results we ma

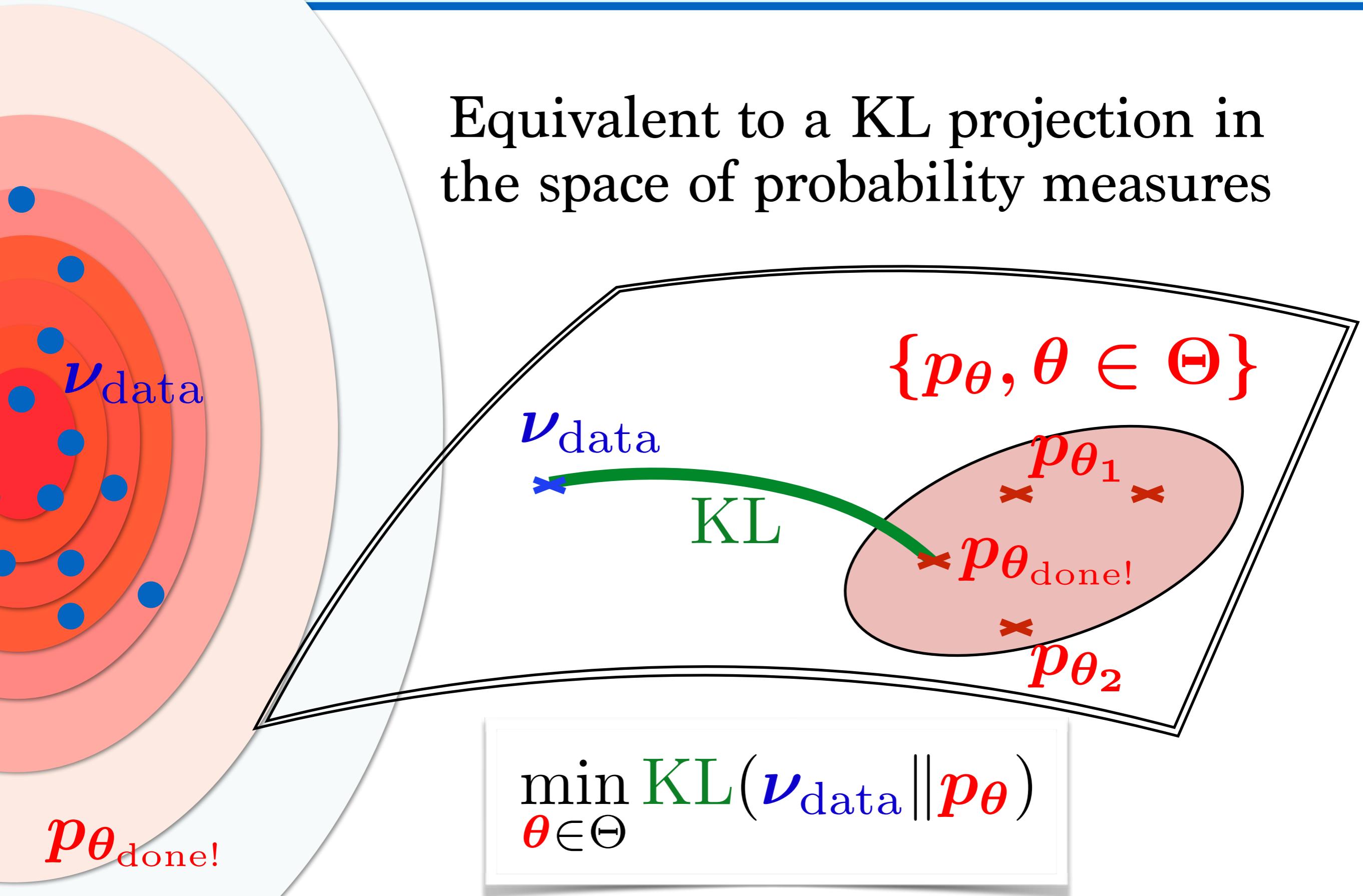
$$\max_{\theta \in \Theta} \frac{1}{N} \sum_{i=1}^N \log p_{\theta}(x_i)$$

$$\log 0 = -\infty$$

$p_{\theta}(x_i)$ must be > 0

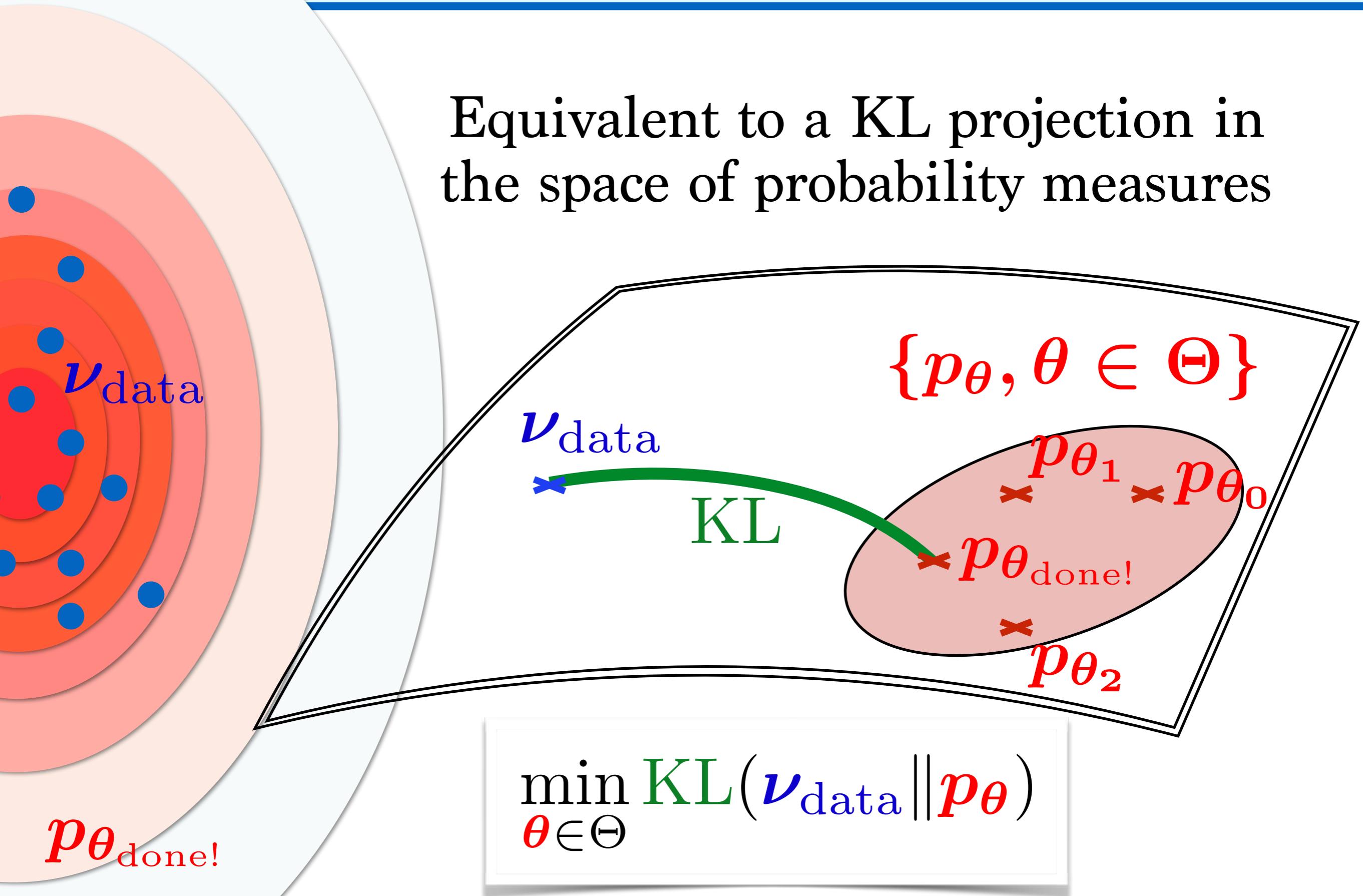
Maximum Likelihood Estimation

Equivalent to a KL projection in the space of probability measures

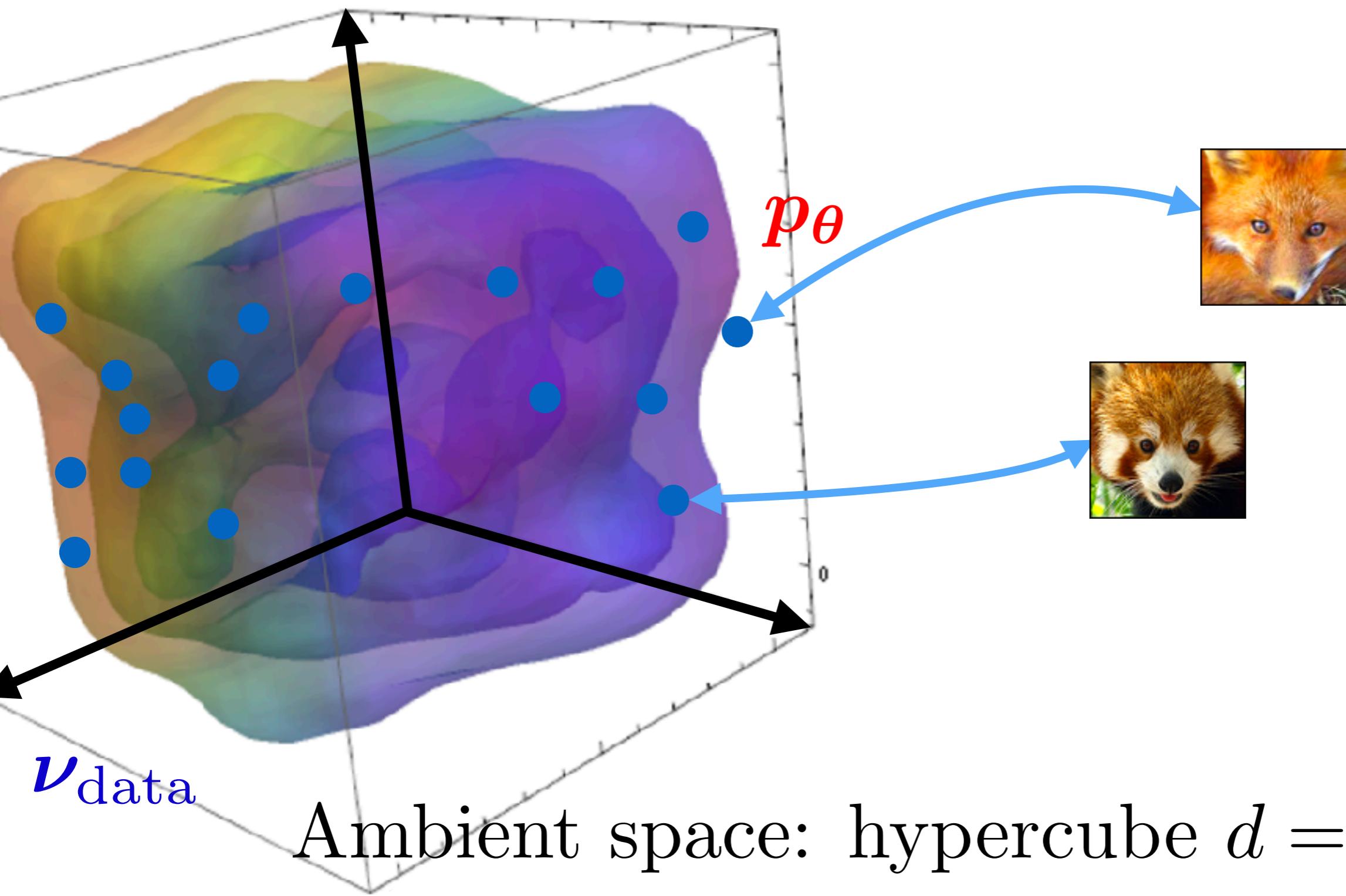


Maximum Likelihood Estimation

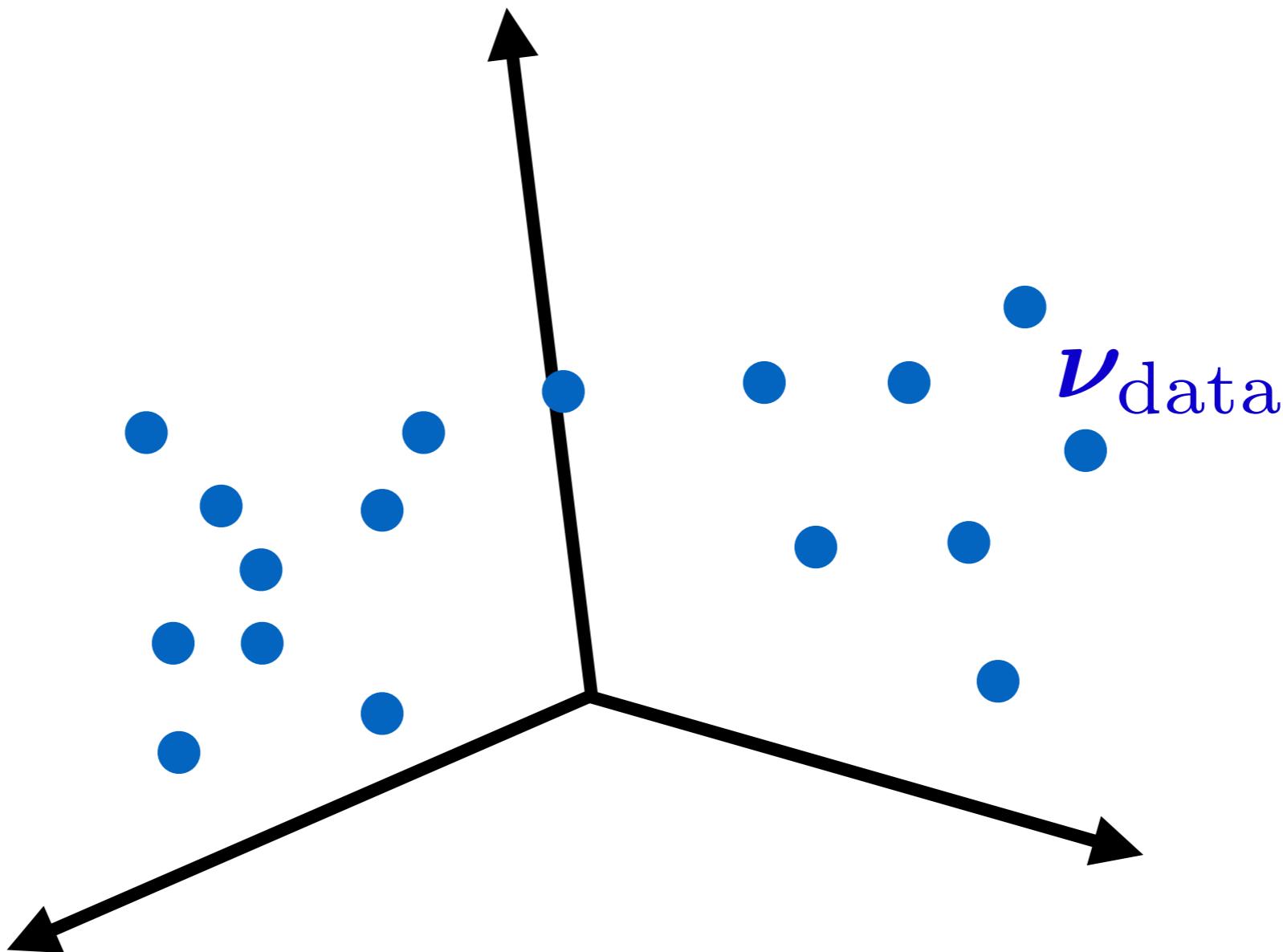
Equivalent to a KL projection in the space of probability measures



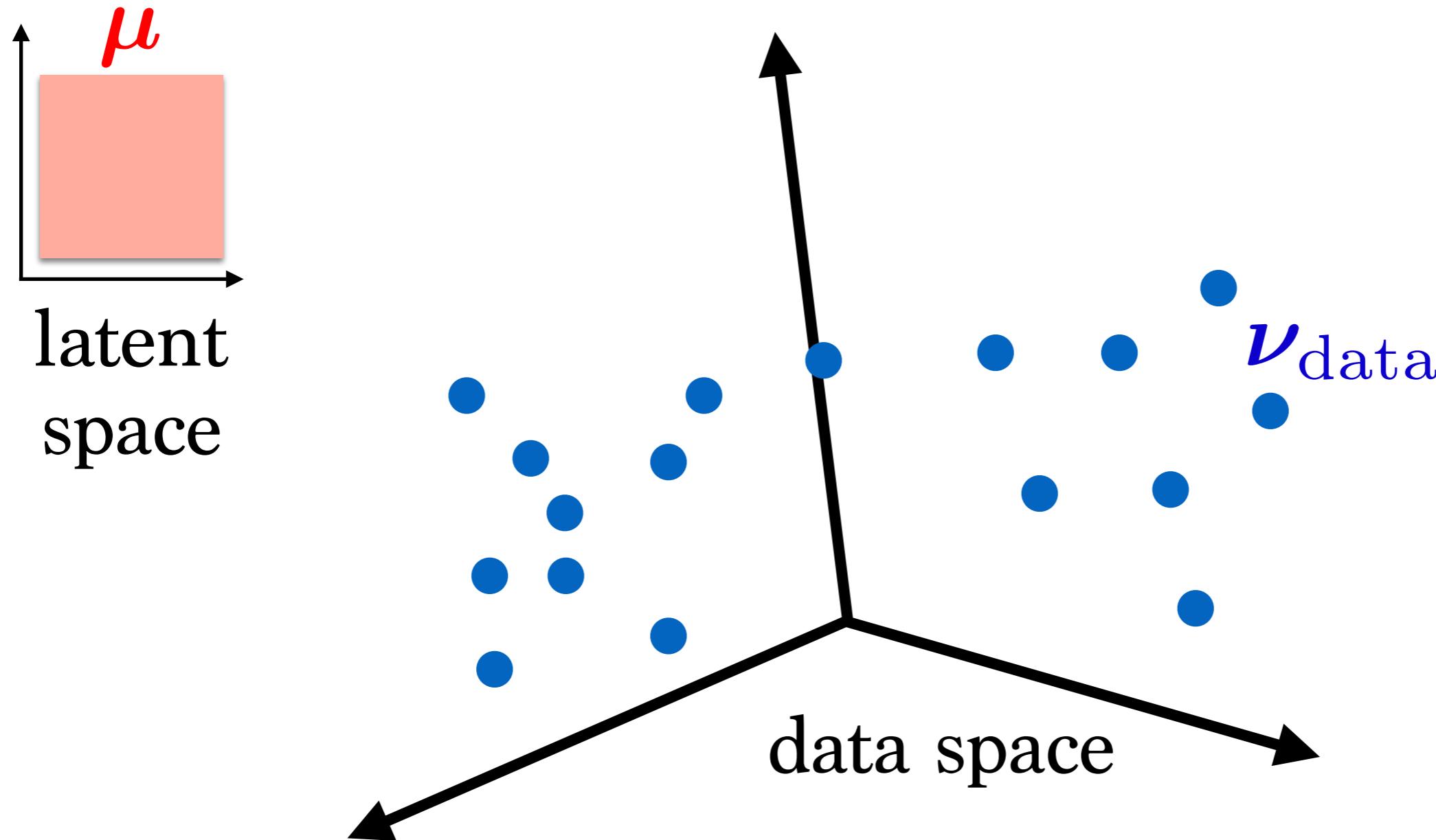
In higher dimensional spaces...



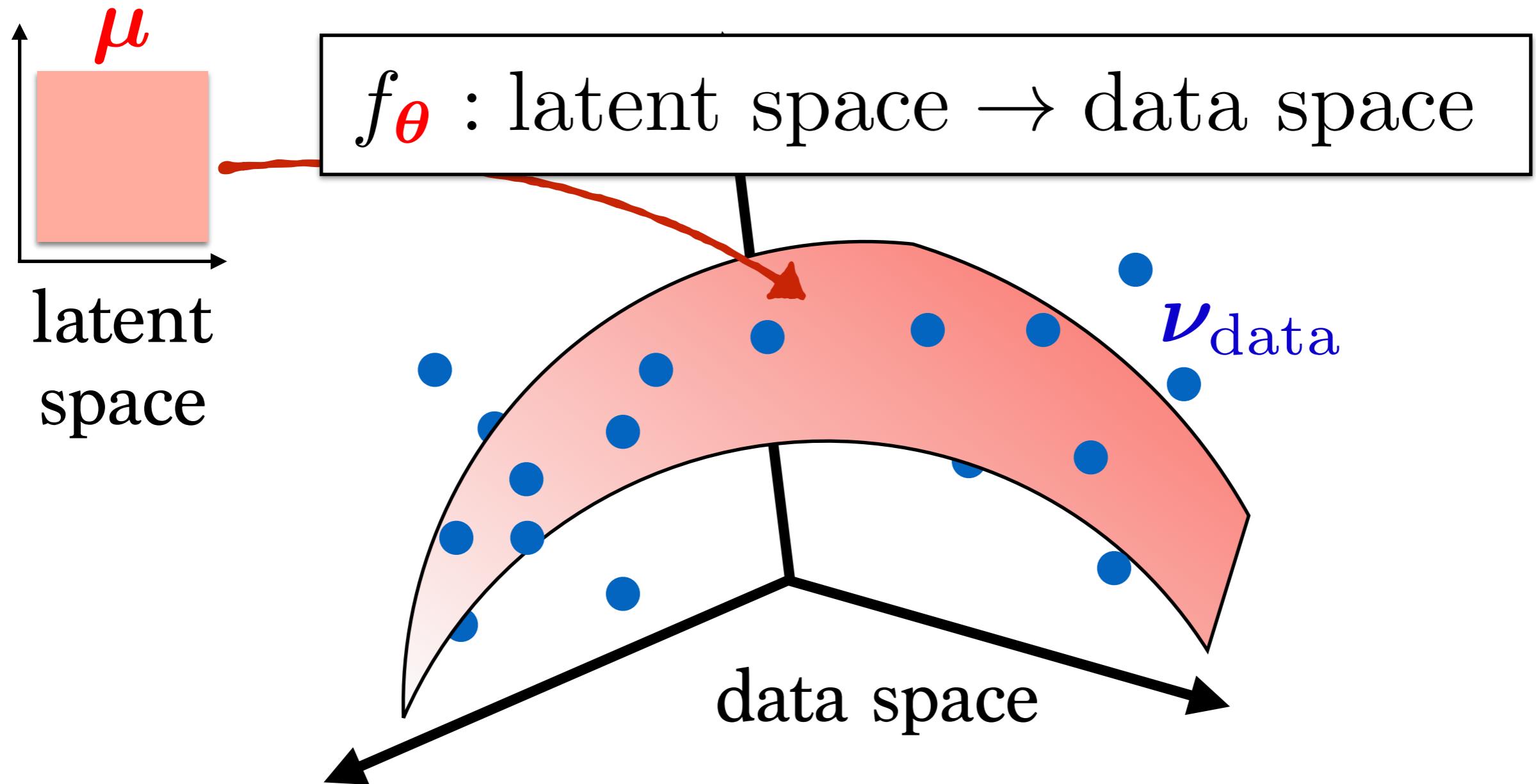
Generative Models



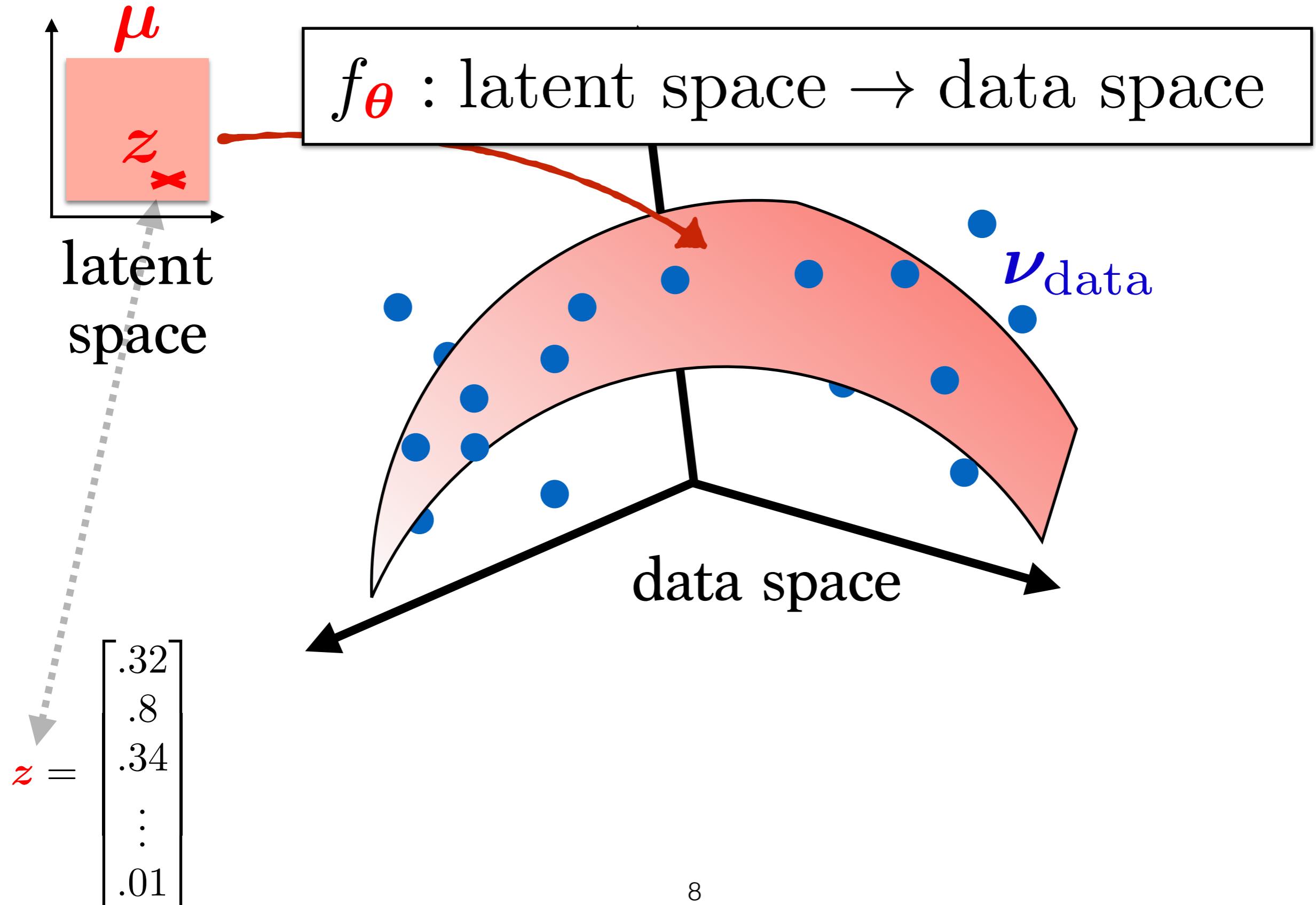
Generative Models



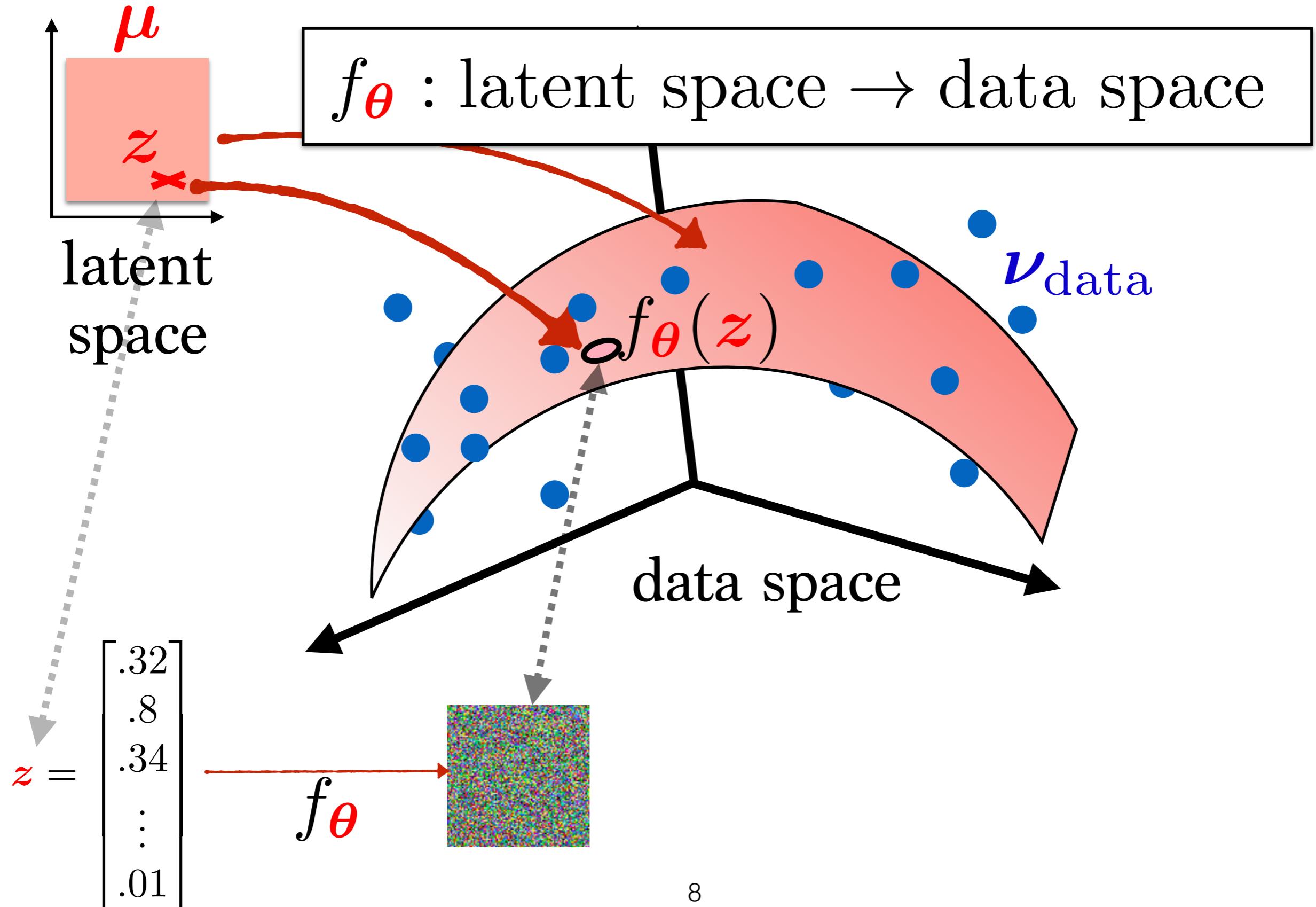
Generative Models



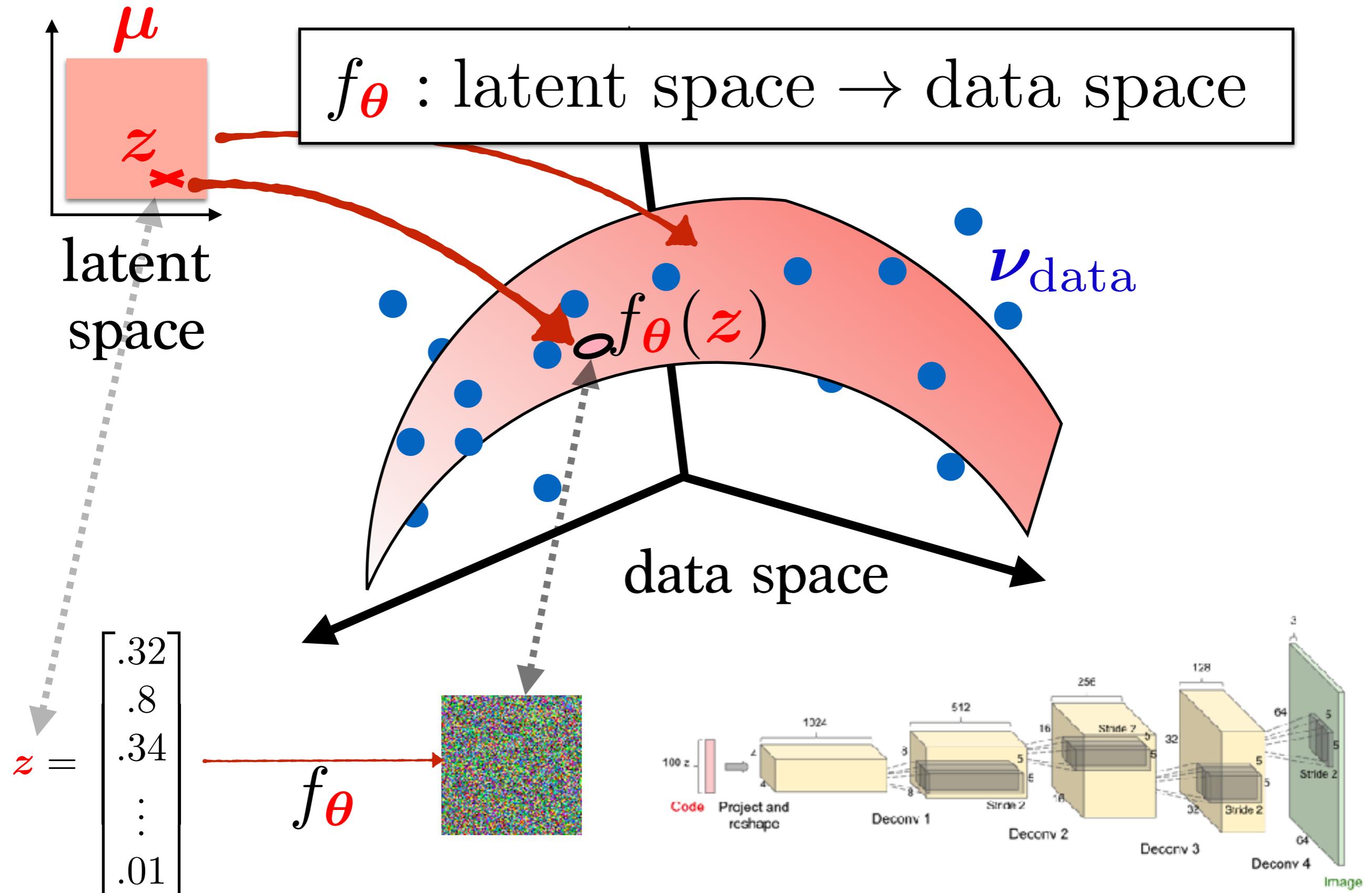
Generative Models



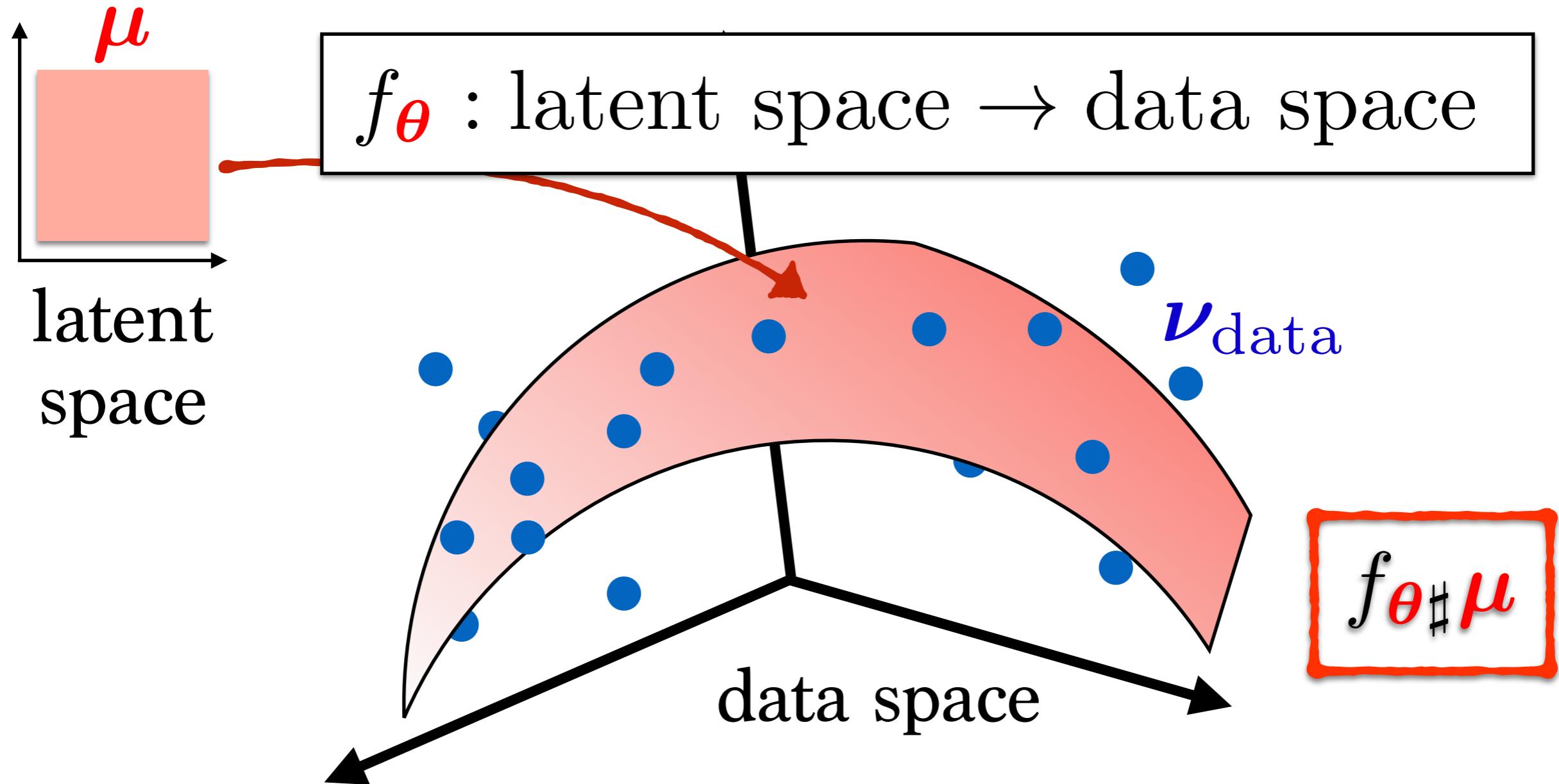
Generative Models



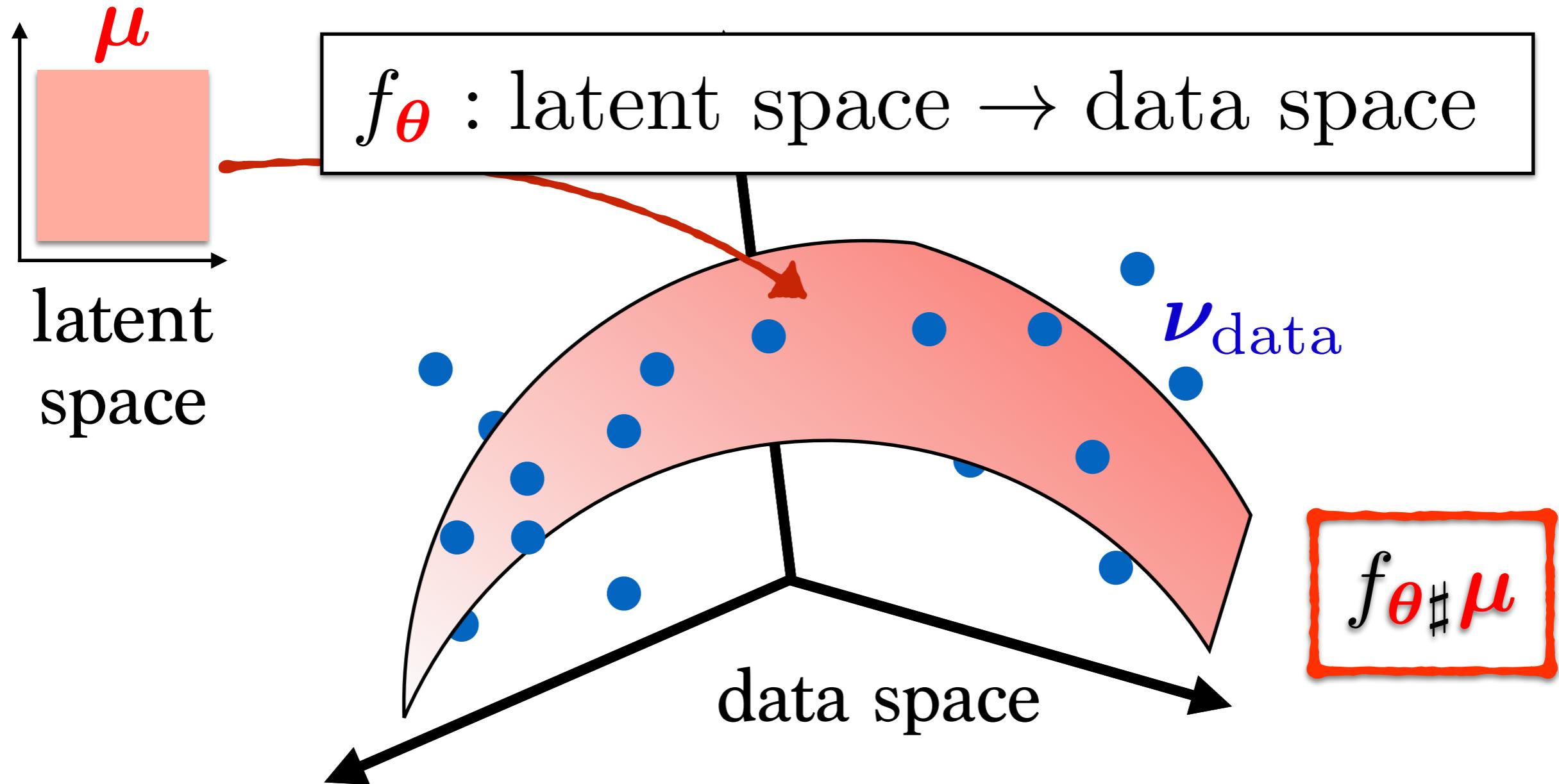
Generative Models



Generative Models

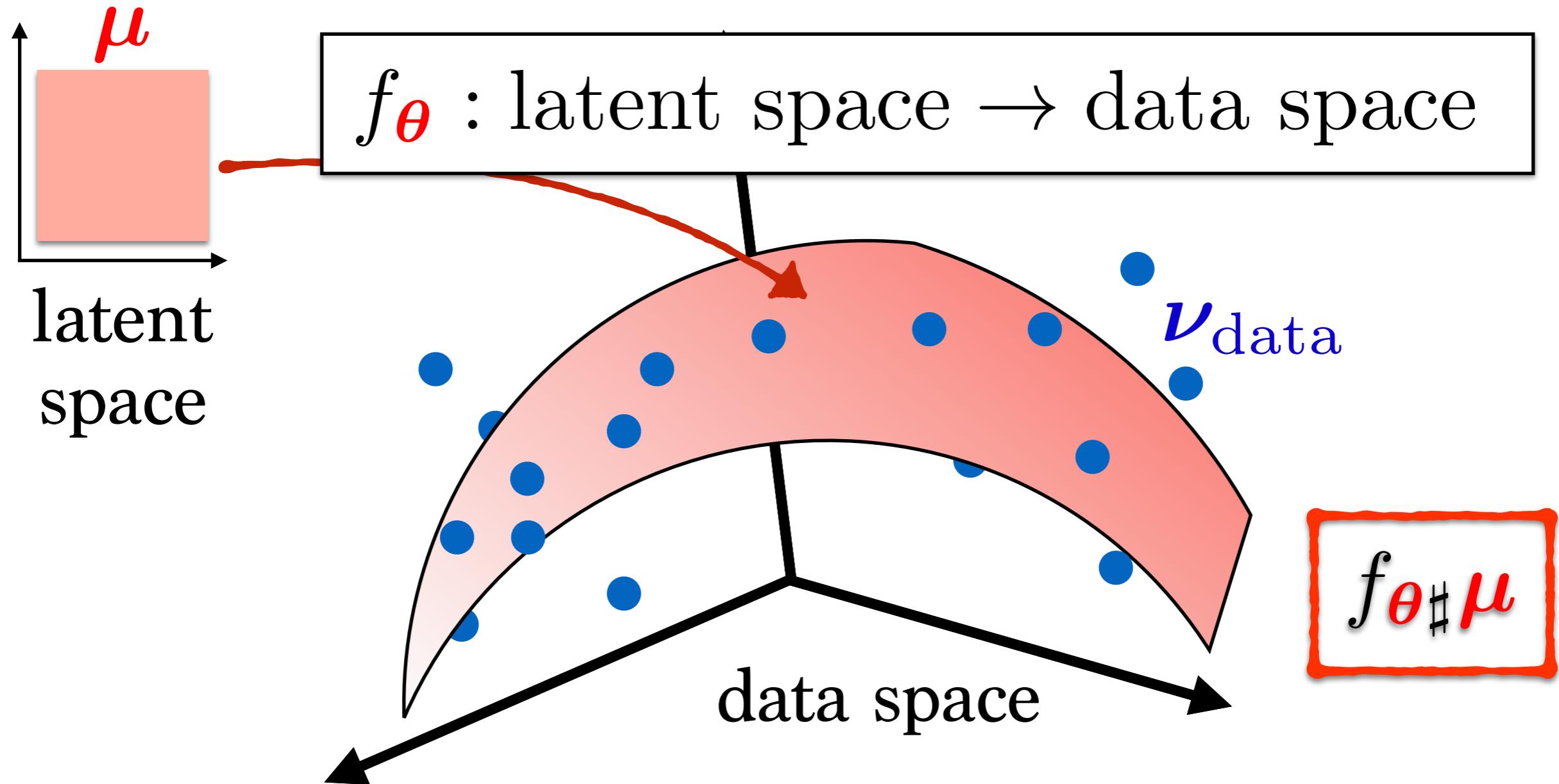


Generative Models



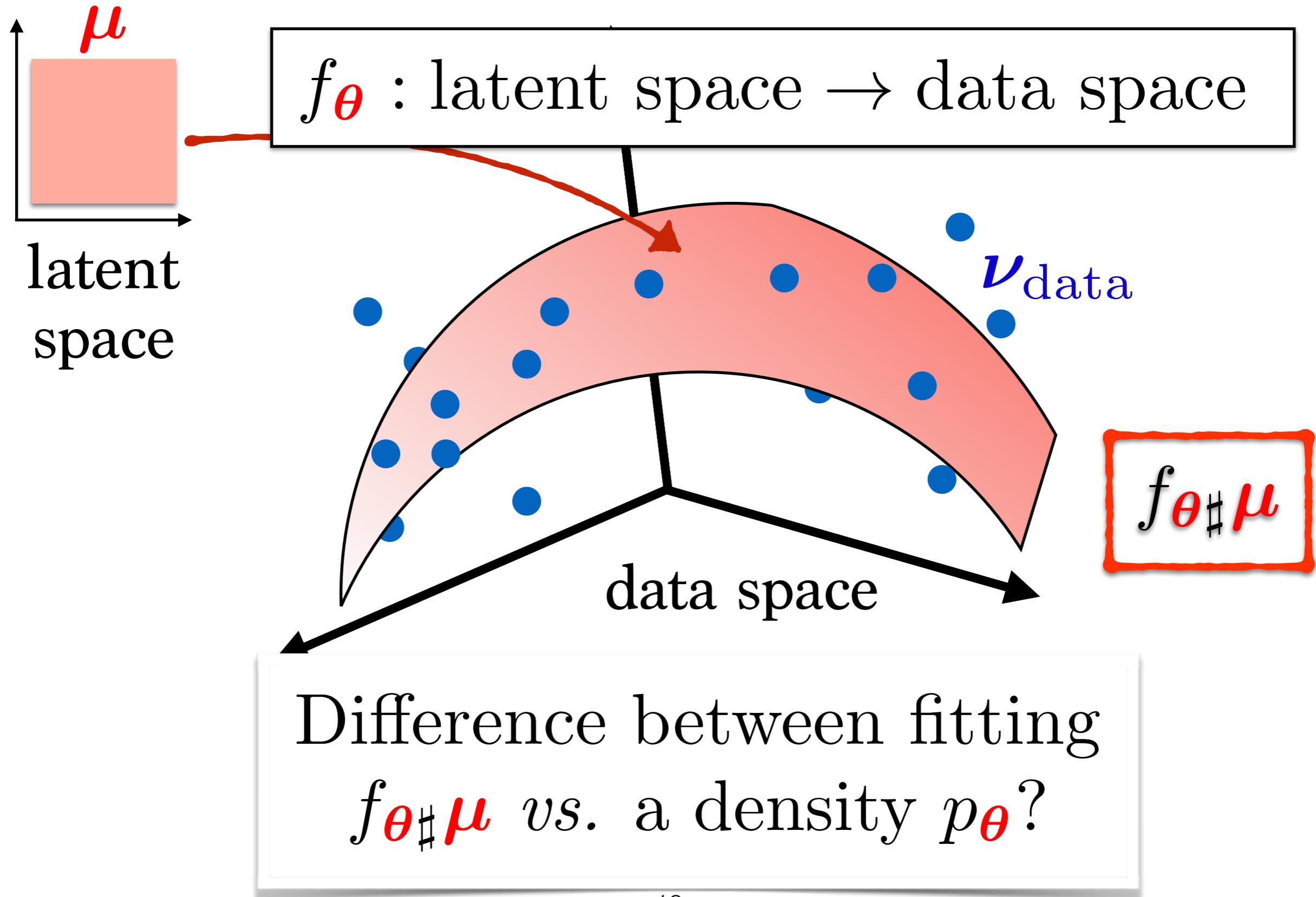
Goal: find θ such that $f_{\theta \sharp} \mu$ fits ν_{data}

Generative Models

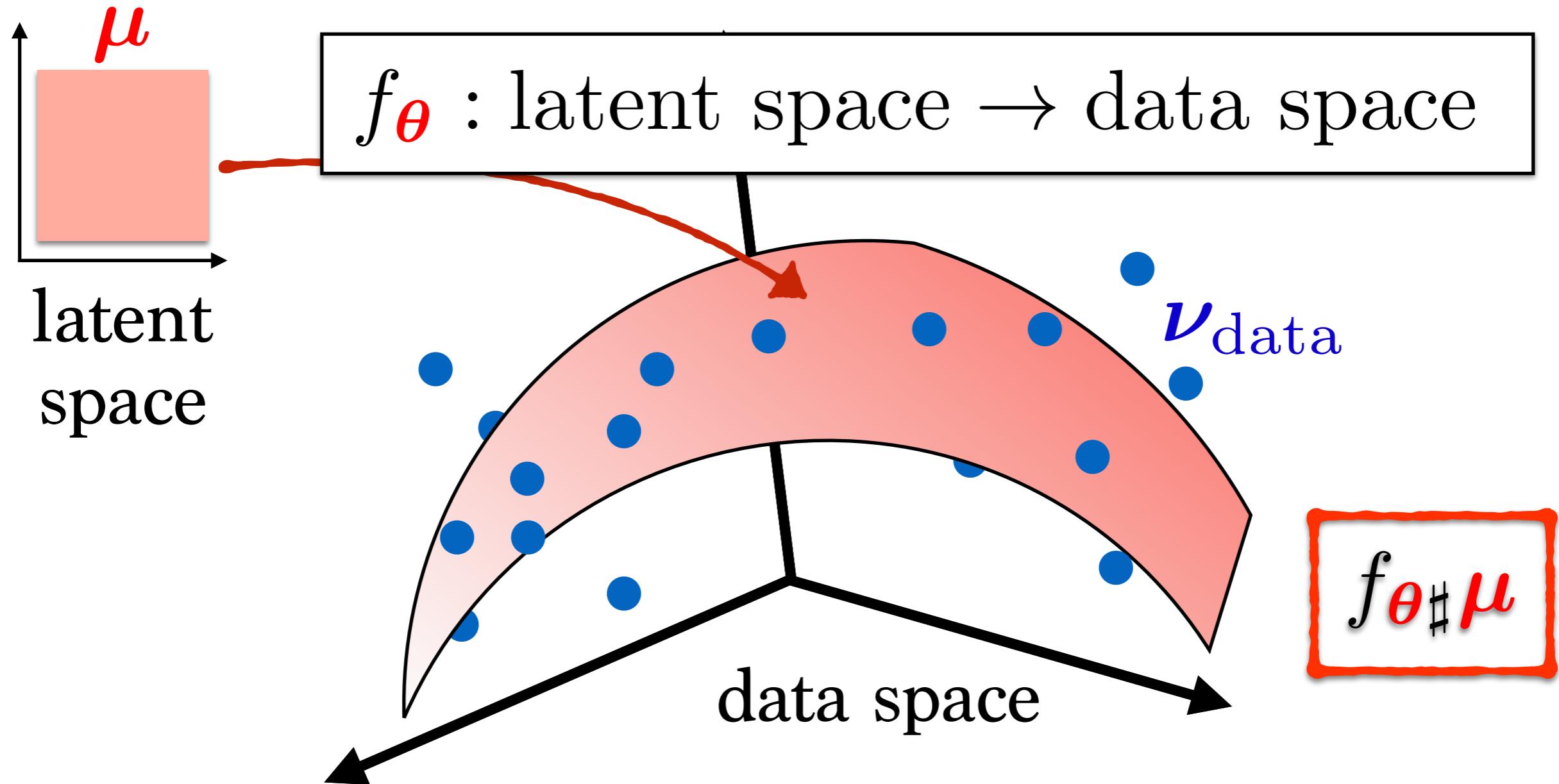


Goal: find θ such that $f_{\theta\sharp}\mu$ fits ν_{data}

Generative Models



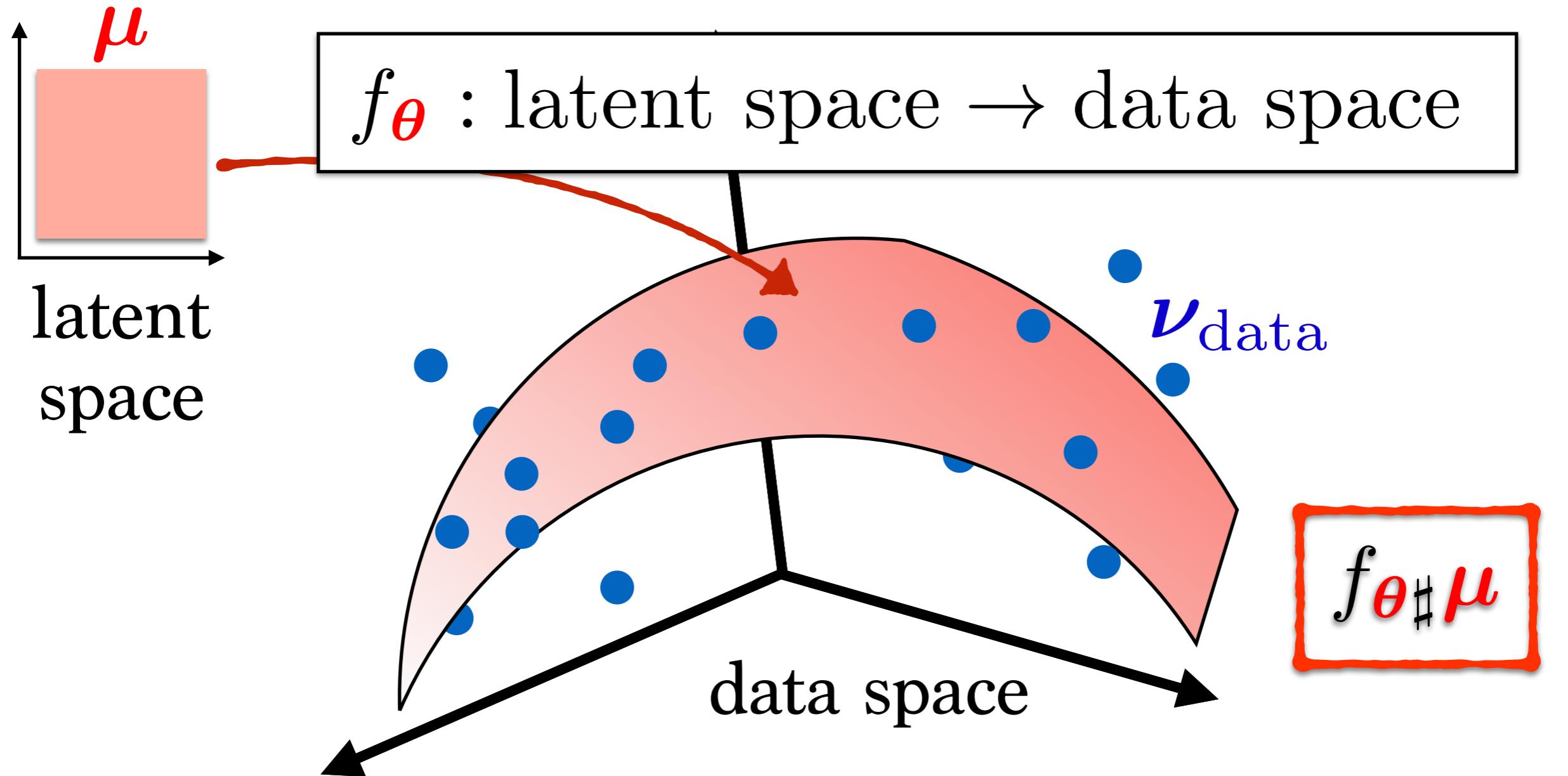
Generative Models



MLE

$$\max_{\theta \in \Theta} \frac{1}{N} \sum_{i=1}^N \log \mathbf{p}_\theta(\mathbf{x}_i) = \min_{\theta \in \Theta} \text{KL}(\nu_{\text{data}} \parallel \mathbf{p}_\theta)$$

Generative Models

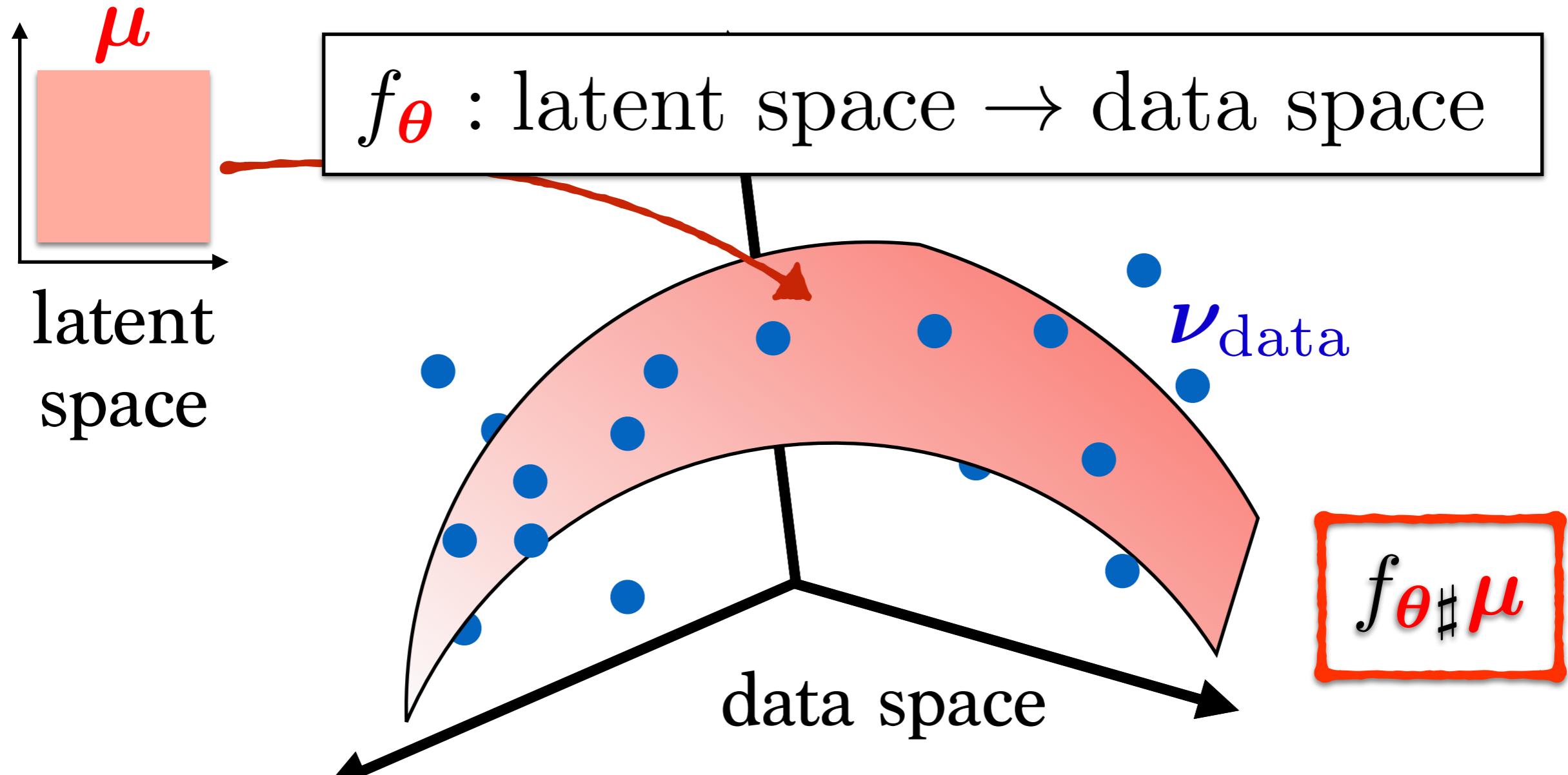


MLE

$$\max_{\theta \in \Theta} \frac{1}{N} \sum_{i=1}^N \log \underline{f_{\theta \sharp} \mu}(x_i)$$

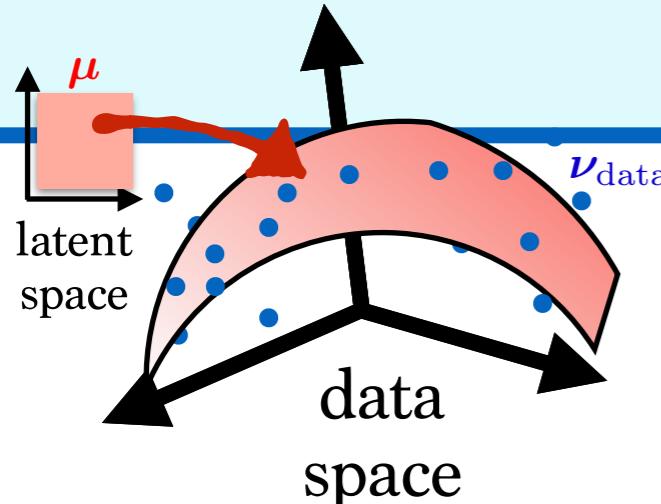
$$\min_{\theta \in \Theta} \text{KL}(\nu_{\text{data}} \parallel \underline{f_{\theta \sharp} \mu})$$

Generative Models



Need a more flexible discrepancy function to compare ν_{data} and $f_{\theta\sharp}\mu$

Workarounds?



- Formulation as **adversarial problem** [GPM...'14]

$$\min_{\theta \in \Theta} \max_{\text{classifiers } g} \text{Accuracy}_g \left((f_{\theta} \sharp \mu, +1), (\nu_{\text{data}}, -1) \right)$$

- Use a **metric Δ** for probability measures, that can handle measures with non-overlapping supports:

$$\min_{\theta \in \Theta} \Delta(\nu_{\text{data}}, p_{\theta}), \quad \text{not } \min_{\theta \in \Theta} \text{KL}(\nu_{\text{data}} \parallel p_{\theta})$$

Minimum Δ Estimation

The Annals of Statistics
1980, Vol. 8, No. 3, 457–487

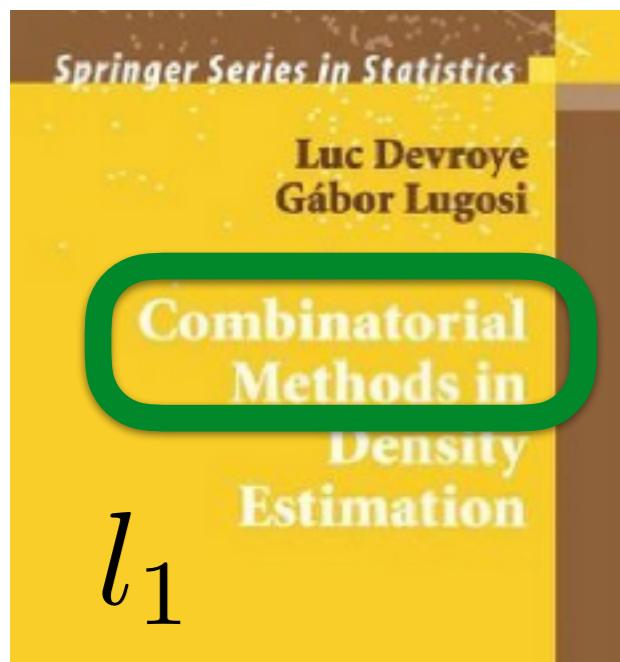
MINIMUM **1 CHI-SQUARE, NOT MAXIMUM LIKELIHOOD!**

BY JOSEPH BERKSON

Mayo Clinic, Rochester, Minnesota

Computational Statistics & Data Analysis 29 (1998) 81–103

**COMPUTATIONAL
STATISTICS
& DATA ANALYSIS**



Minimum **Hellinger** distance
estimation for Poisson mixtures

Dimitris Karlis, Evdokia Xekalaki*

Department of Statistics, Athens University of Economics and Business, 76 Patission Str., 104 34 Athens, Greece

Available online at www.sciencedirect.com

SCIENCE @ DIRECT*

Statistics & Probability Letters 76 (2006) 1298–1302

**STATISTICS &
PROBABILITY
LETTERS**

www.elsevier.com/locate/stapro

On minimum **Kantorovich** distance estimators

Federico Bassetti^a, Antonella Bodini^b, Eugenio Regazzini^{a,*}

△ Generative Model Estimation

Generative Moment Matching Networks

Yujia Li¹

Kevin Swersky¹

Richard Zemel^{1,2}

¹Department of Computer Science, University of Toronto, Toronto, ON, CANADA

²Canadian Institute for Advanced Research, Toronto, ON, CANADA

YUJIALI@CS.TORONTO.EDU

KSWERSKY@CS.TORONTO.EDU

ZEMEL@CS.TORONTO.EDU

Training generative neural networks via Maximum Mean Discrepancy optimization

Gintare Karolina Dziugaite
University of Cambridge

Daniel M. Roy
University of Toronto

Zoubin Ghahramani
University of Cambridge

MMD GAN: Towards Deeper Understanding of Moment Matching Network

Chun-Liang Li^{1,*} Wei-Cheng Chang^{1,*} Yu Cheng² Yiming Yang¹ Barnabás Póczos¹

¹ Carnegie Mellon University, ²IBM Research

{chunli, wchang2, yiming, bapoczos}@cs.cmu.edu chengyu@us.ibm.com

△ Generative Model Estimation

Generative Moment Matching Networks

Yujia Li¹
Kevin Swersky¹
Richard Zemel^{1,2}

YUJIALI@CS.TORONTO.EDU
KSWERSKY@CS.TORONTO.EDU
ZEMEL@CS.TORONTO.EDU

¹Department of Computer Science, University of Toronto, Toronto, ON, CANADA

²Canadian Institute for Advanced Research, Toronto, ON, CANADA

MMD GAN: Towards Deeper Understanding of Moment Matching Network

Training generative neural networks via Maximum Mean Discrepancy optimization

Gintare Karolina Dziugaite
University of Cambridge

Daniel M. Roy
University of Toronto

Zoubin Ghahramani
University of Cambridge

Wasserstein Training of Restricted Boltzmann Machines

Chun-Liang Li^{1,*} Wei-Cheng Chang^{1,*} Yu Cheng² Yiming Yang¹ Barnabás Póczos¹
¹ Carnegie Mellon University, ²IBM Research
{chunli, wchang2, yiming, bapoczos}@cs.cmu.edu chengyu@us.ibm.com

Grégoire Montavon
Technische Universität Berlin
gregoire.montavon@tu-berlin.de

Klaus-Robert Müller^{*}
Technische Universität Berlin
klaus-robert.mueller@tu-berlin.de

Inference in generative models using the Wasserstein distance

Espen Bernton, Mathieu Gerber, Pierre E. Jacob, Christian P. Robert

Wasserstein GAN

Martin Arjovsky¹, Soumith Chintala², and Léon Bottou^{1,2}

¹Courant Institute of Mathematical Sciences

²Facebook AI Research

Marco Cuturi
CREST, ENSAE, Université Paris-Saclay
marco.cuturi@ensae.fr

△ Generative Model Estimation

Generative Moment Matching Networks

Yujia Li¹
Kevin Swersky¹
Richard Zemel^{1,2}

YUJIALI@CS.TORONTO.EDU
KSWERSKY@CS.TORONTO.EDU
ZEMEL@CS.TORONTO.EDU

¹Department of Computer Science, University of Toronto, Toronto, ON, CANADA

²Canadian Institute for Advanced Research, Toronto, ON, CANADA

Training generative neural networks via Maximum Mean Discrepancy optimization

MMD GAN: Towards Deeper Understanding of Moment Matching Network

Chun-Liang Li^{1,*} Wei-Cheng Chang^{1,*} Yu Cheng² Yiming Yang¹ Barnabás Póczos¹
¹ Carnegie Mellon University, ²IBM Research
{chunli, wchang2, yiming, bapoczos}@cs.cmu.edu chengyu@us.ibm.com

Gintare Karolina Dziugaite
University of Cambridge

Daniel M. Roy
University of Toronto

Zoubin Ghahramani
University of Cambridge

Wasserstein Training of Restricted Boltzmann Machines

Grégoire Montavon
Technische Universität Berlin
gregoire.montavon@tu-berlin.de

Klaus-Robert Müller^{*}
Technische Universität Berlin
klaus-robert.mueller@tu-berlin.de

Inference in generative models using the Wasserstein distance

Espen Bernton, Mathieu Gerber, Pierre E. Jacob, Christian P. Robert

Wasserstein GAN

Martin Arjovsky¹, Soumith Chintala², and Léon Bottou^{1,2}

¹Courant Institute of Mathematical Sciences

²Facebook AI Research

Marco Cuturi
CREST, ENSAE, Université Paris-Saclay
marco.cuturi@ensae.fr

Learning Generative Models with Sinkhorn Divergences

Improving GANs Using Optimal Transport

Aude Genevay
CEREMADE,
Université Paris-Dauphine

Gabriel Peyré
CNRS and DMA,
École Normale Supérieure

Marco Cuturi
ENSAE CREST
Université Paris-Saclay

Tim Salimans^{*}
OpenAI
tim@openai.com

Han Zhang[†]
Rutgers University
han.zhang@cs.rutgers.edu

Alec Radford
OpenAI
alec@openai.com

Dimitris Metaxas
Rutgers University
dnm@cs.rutgers.edu

Minimum Kantorovich Estimation

- Use optimal transport theory, namely *Wasserstein distances* to define discrepancy Δ .

$$\min_{\theta \in \Theta} W(\nu_{\text{data}}, f_{\theta \sharp} \mu)$$

- Optimal transport? fertile field in mathematics.

Monge

Kantorovich

Dantzig

Brenier

Otto

McCann

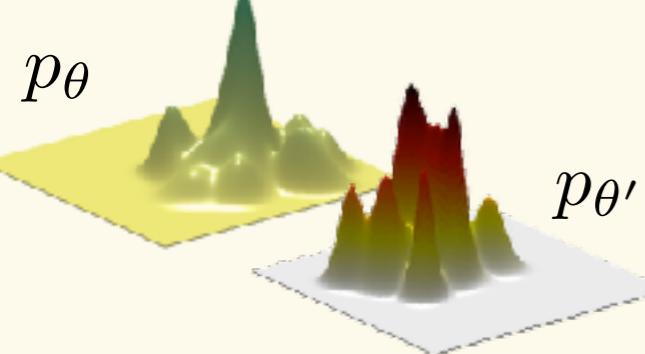
Villani

Nobel '75

Fields '10

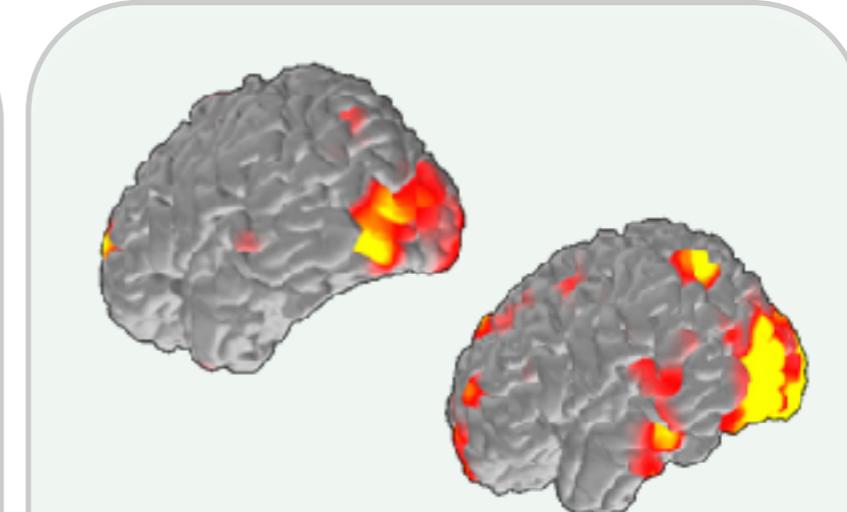
What is Optimal Transport?

The natural geometry for probability measures



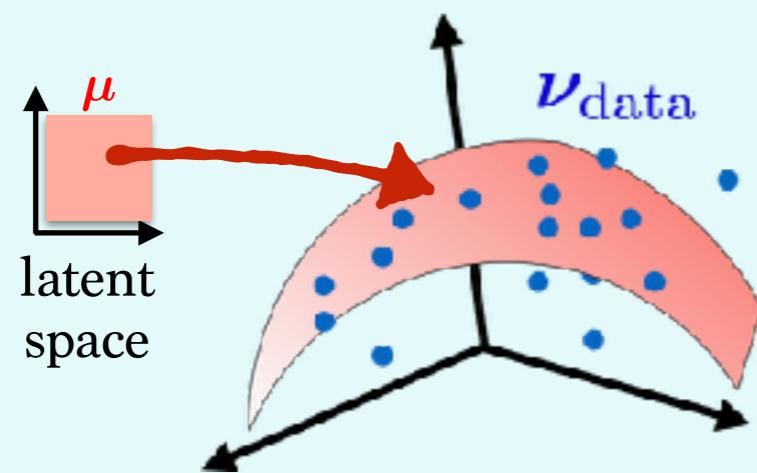
Statistical Models

Bags
of features



Brain Activation Maps

Generative
Models
vs. data

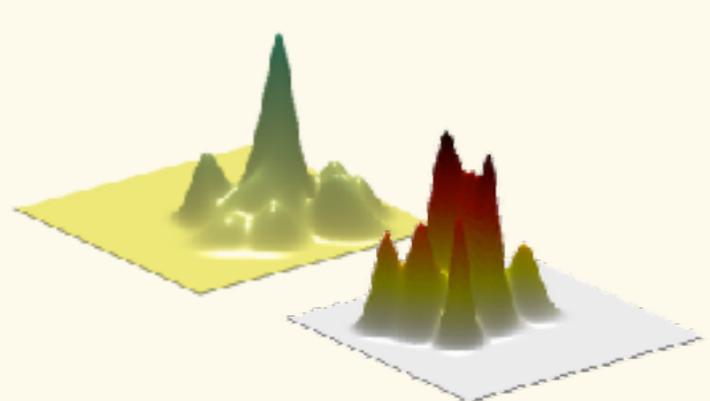


18

Color Histograms

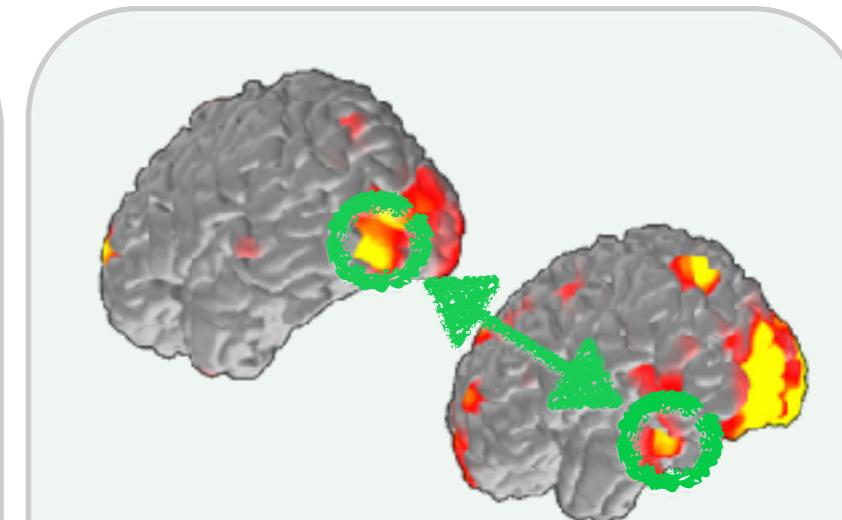
What is Optimal Transport?

The natural geometry for **probability measures** supported on a geometric space.

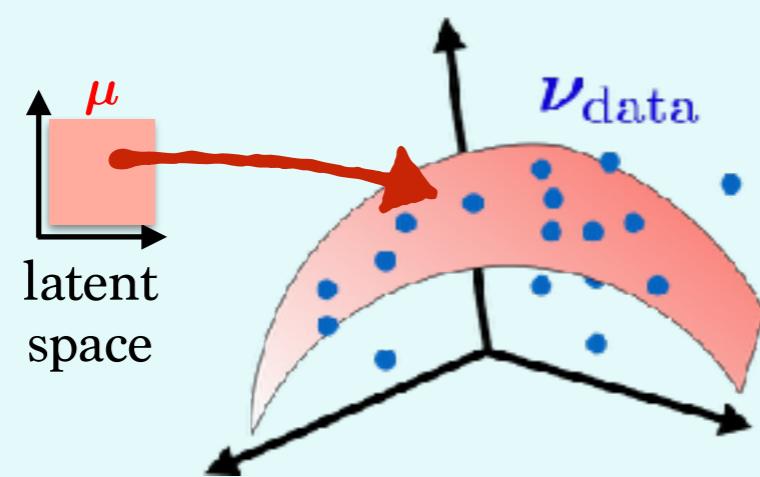


Statistical Models

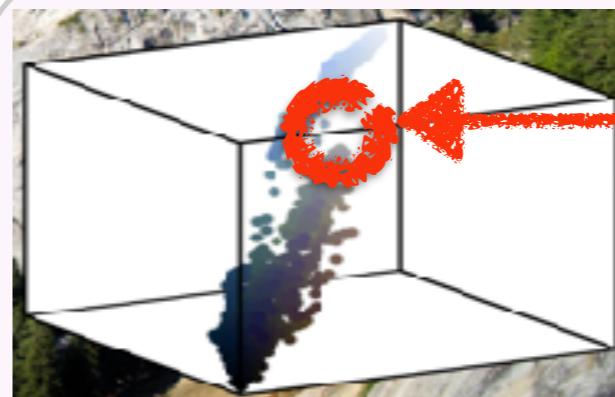
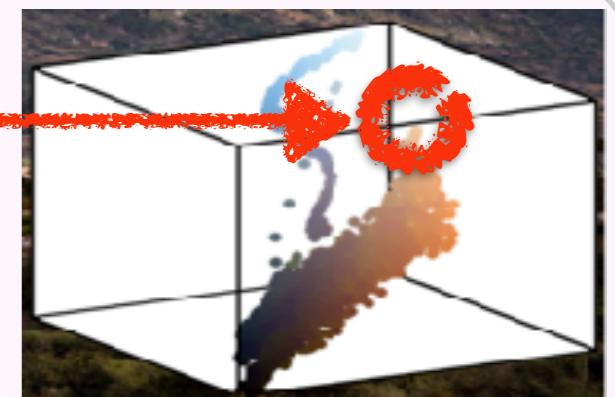
Bags of Features



Brain Activation Maps



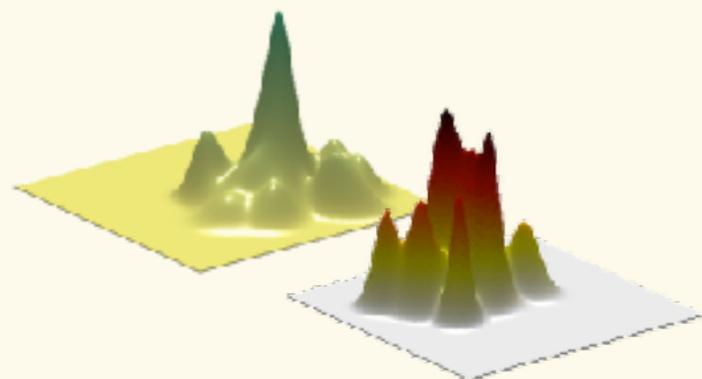
Generative Models vs. Data



Color Histograms

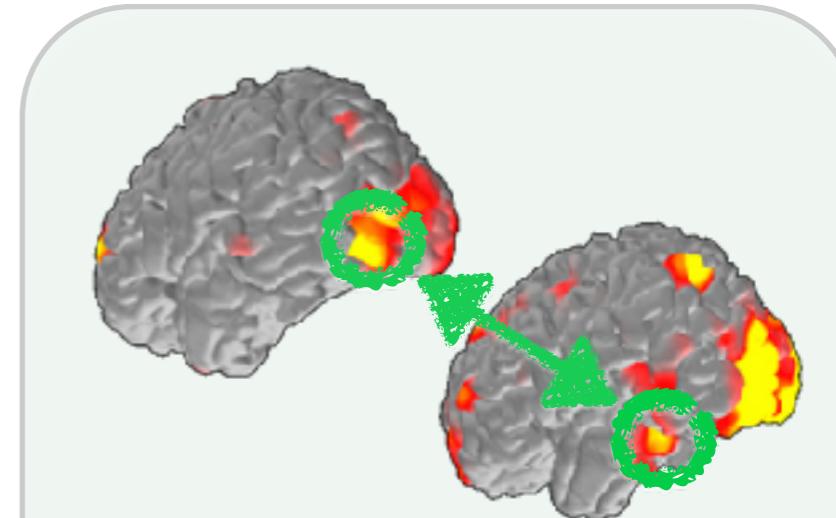
What is Optimal Transport?

The natural geometry for **probability measures** supported on a geometric space.



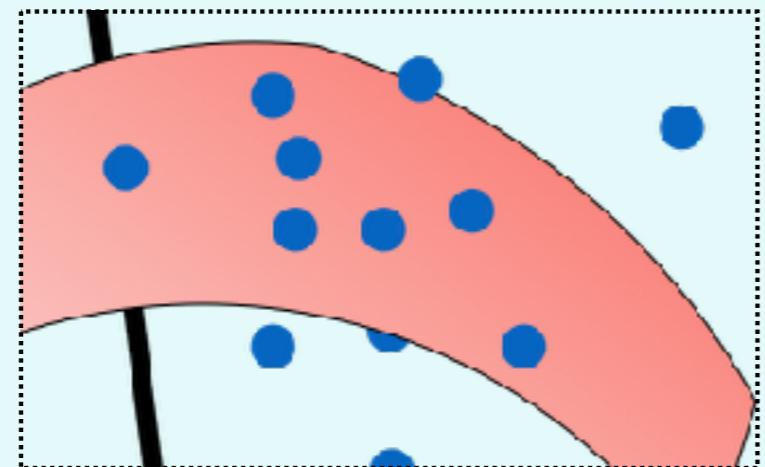
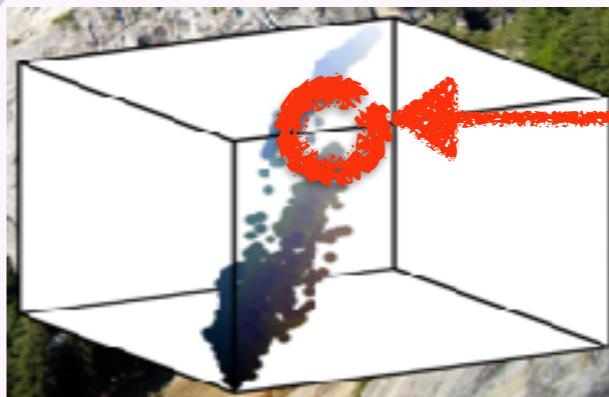
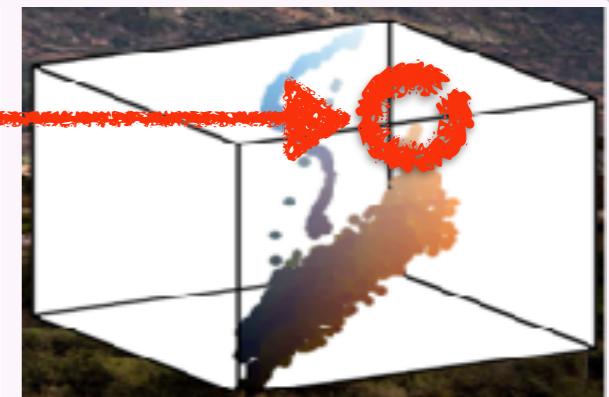
Statistical Models

*Bags
of Features*



Brain Activation Maps

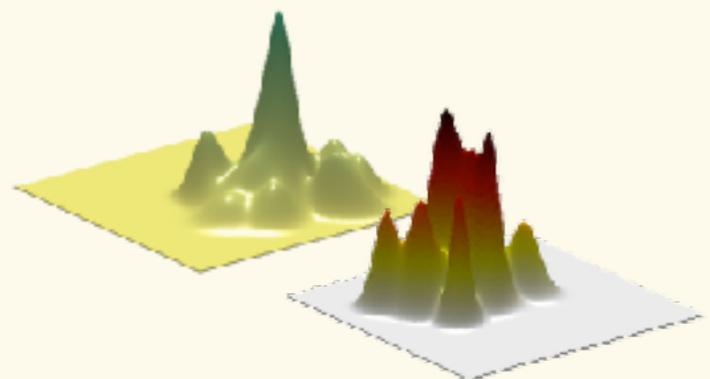
*Generative
Models
vs. Data*



Color Histograms

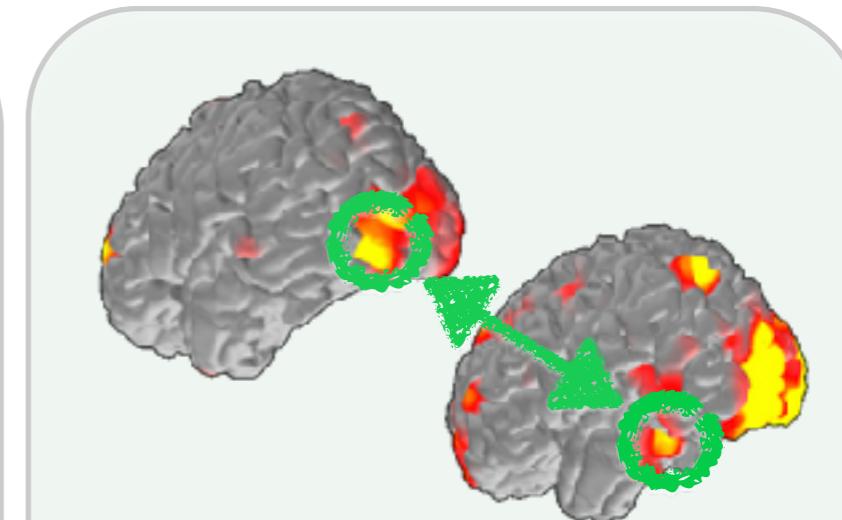
What is Optimal Transport?

The natural geometry for **probability measures** supported on a geometric space.

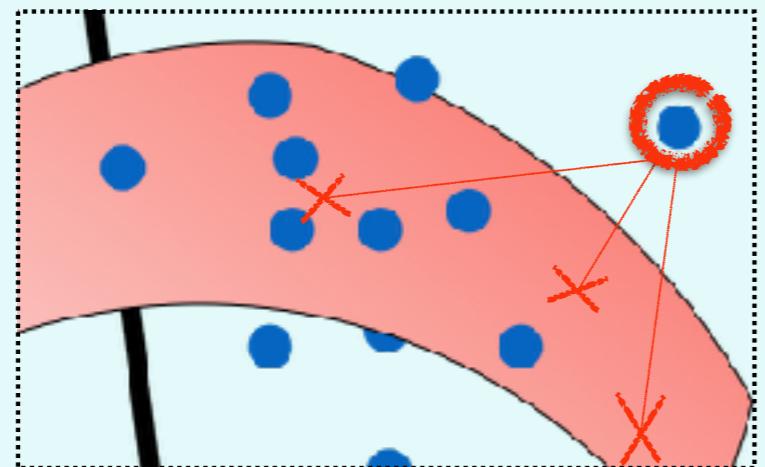


Statistical Models

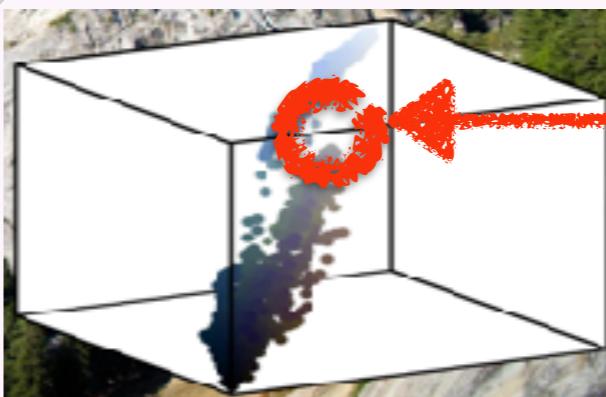
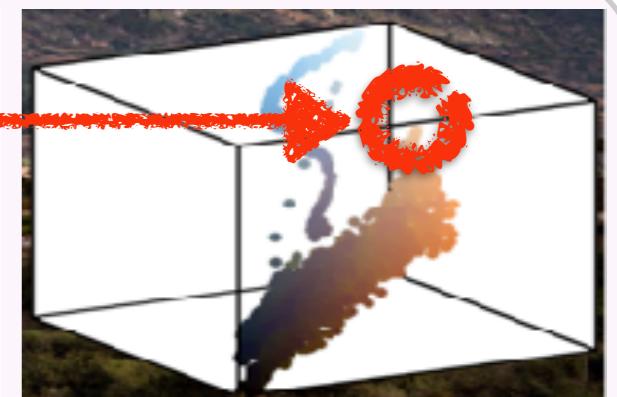
*Bags
of Features*



Brain Activation Maps



*Generative
Models
vs. Data*



Origins: Monge Problem (1781)

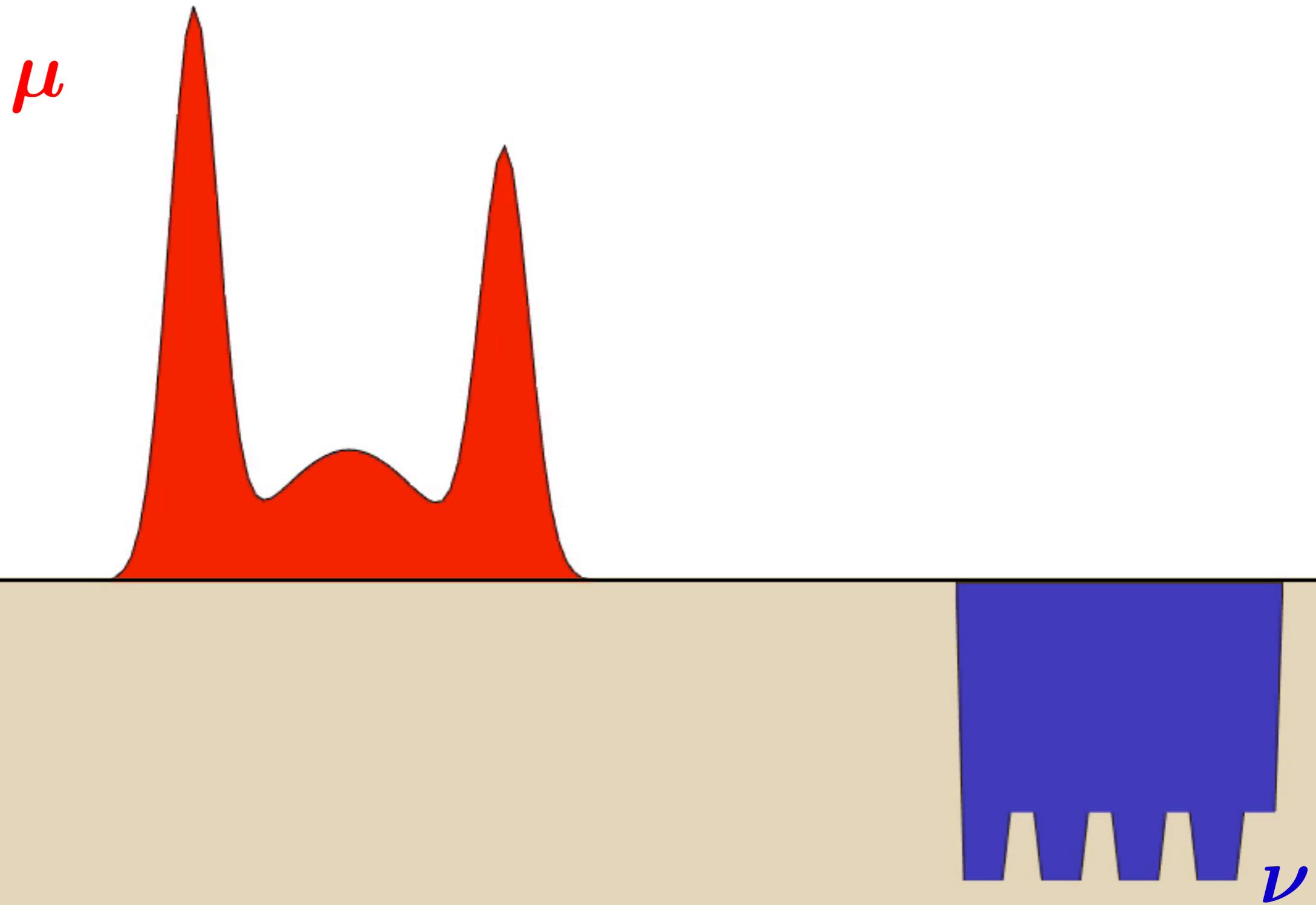
60 MÉMOIRES DE L'ACADEMIE ROYALE

MÉMOIRE
SUR LA
THÉORIE DES DÉBLAIS
ET DES REMBLAIS.

Par M. MONGE.

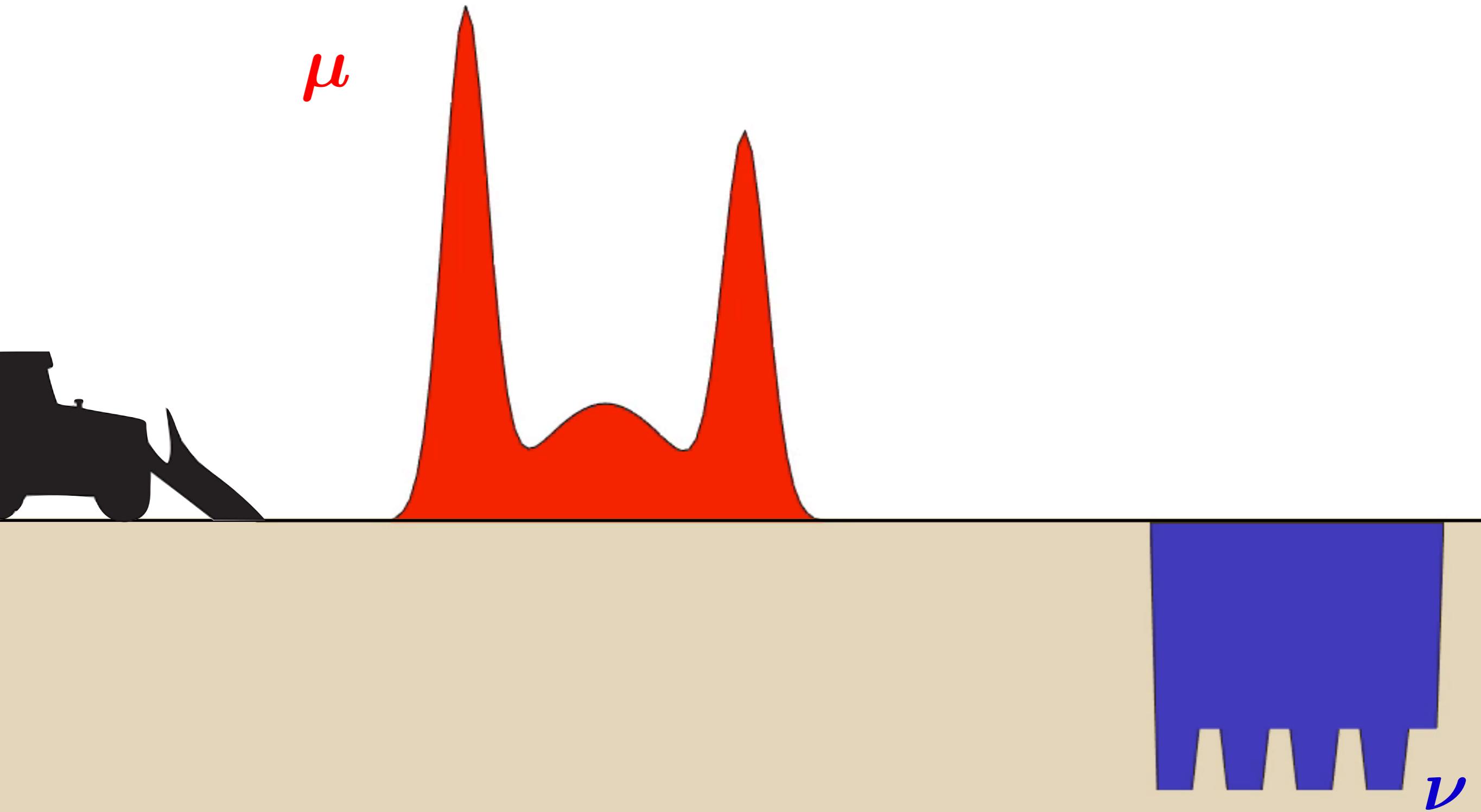
LORSQU'ON doit transporter des terres d'un lieu dans un autre, on a coutume de donner le nom de *Déblai* au volume des terres que l'on doit transporter, & le nom de *Remblai* à l'espace qu'elles doivent occuper après le transport.

Origins: Monge Problem



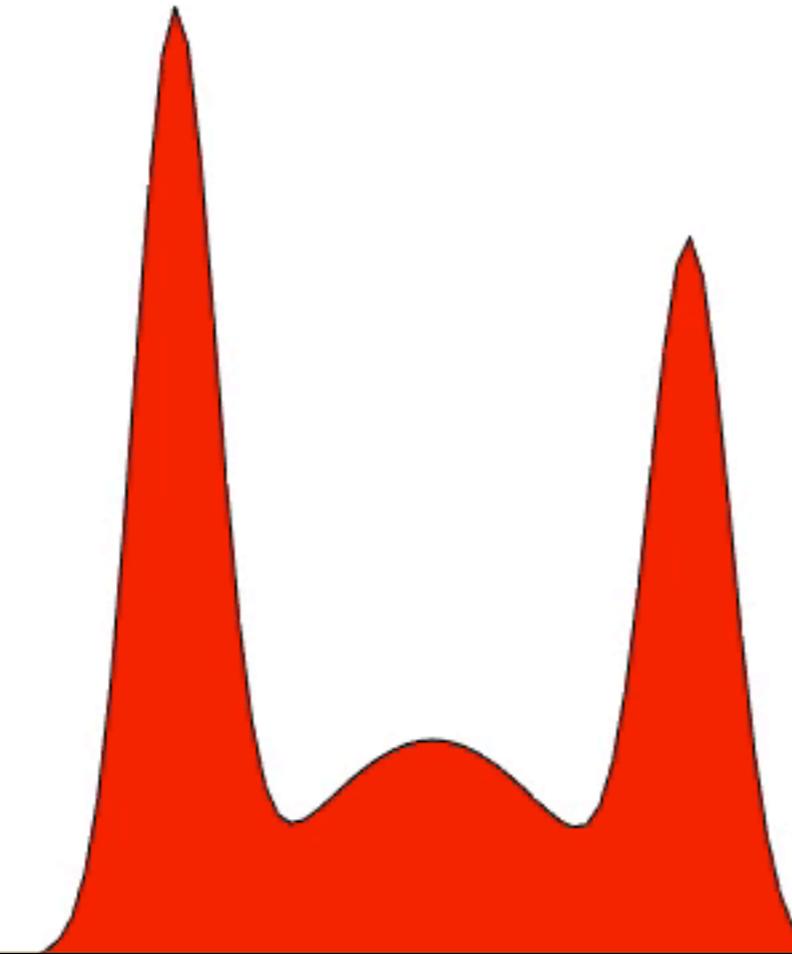
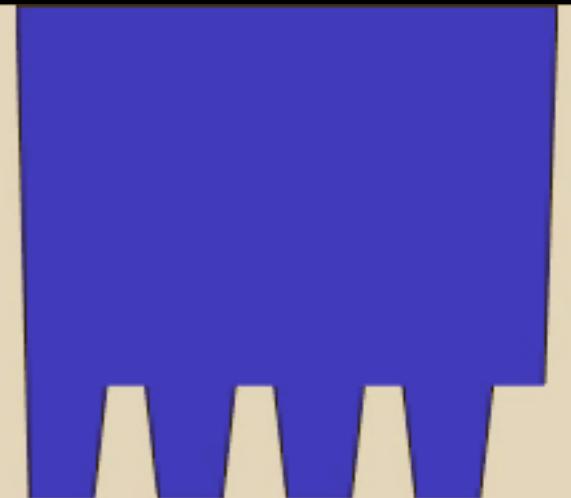
Origins: Monge Problem

In the 21st Century...



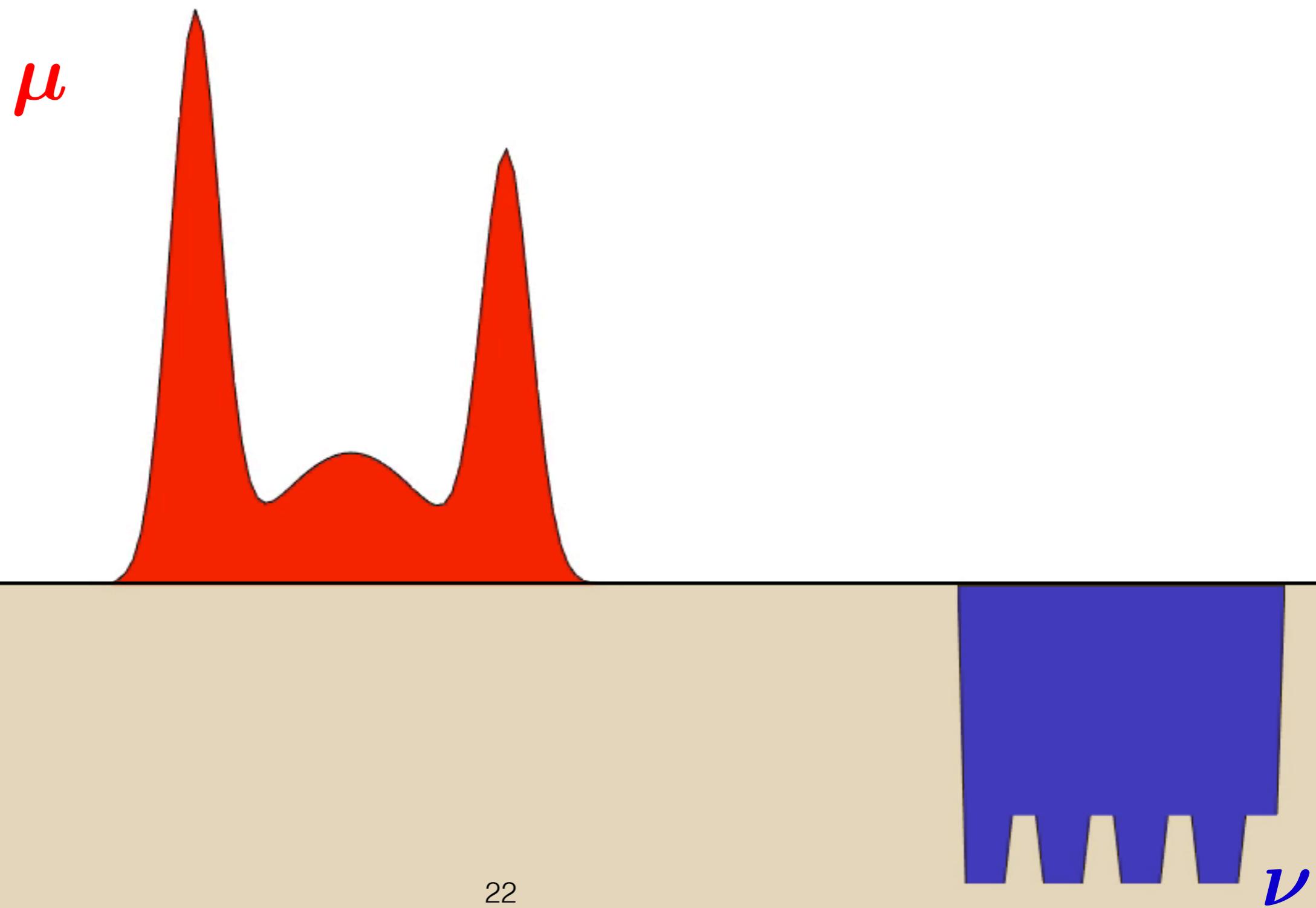
Origins: Monge Problem

In the 21st Century...



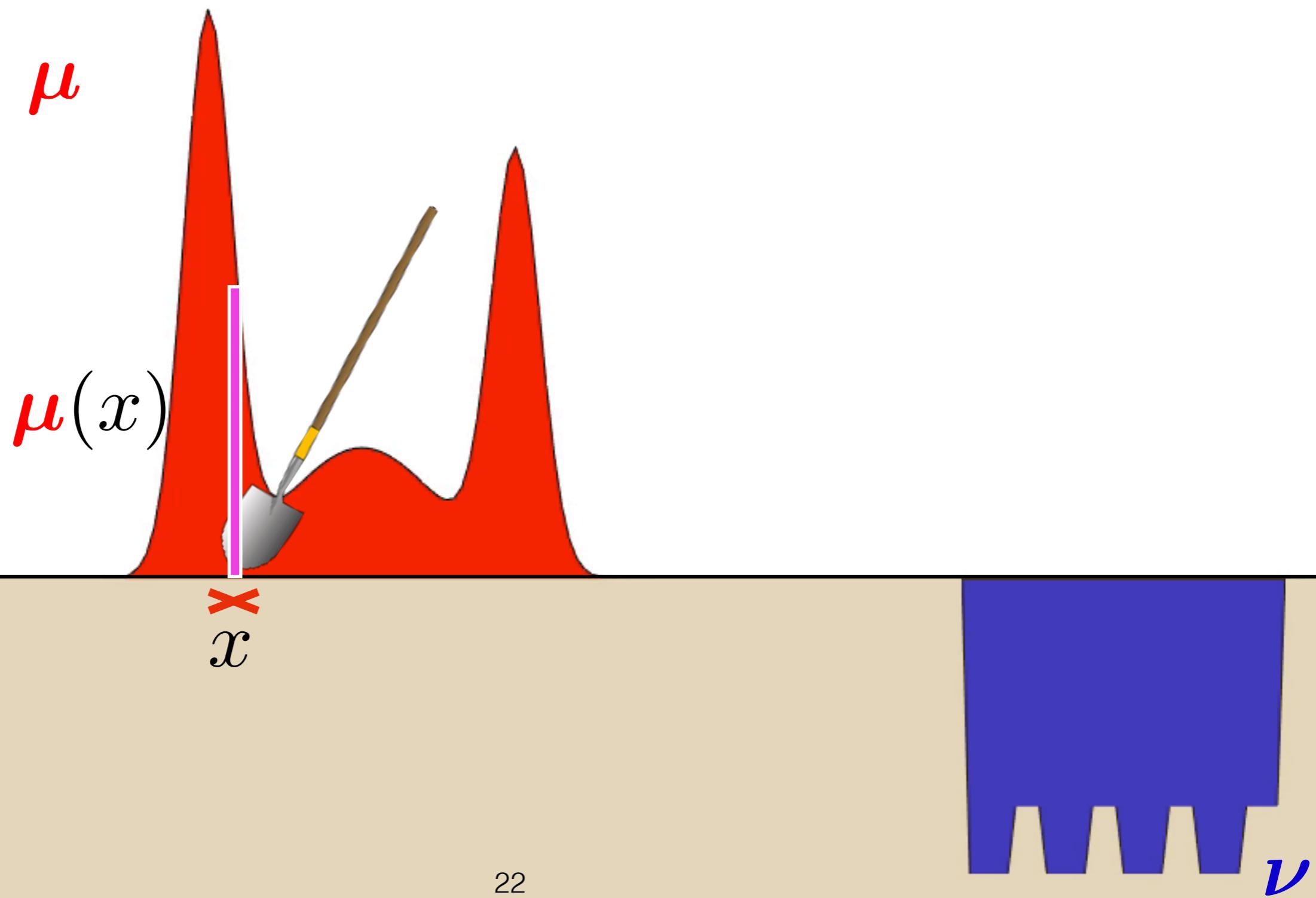
Origins: Monge's Problem

In 1781 however...



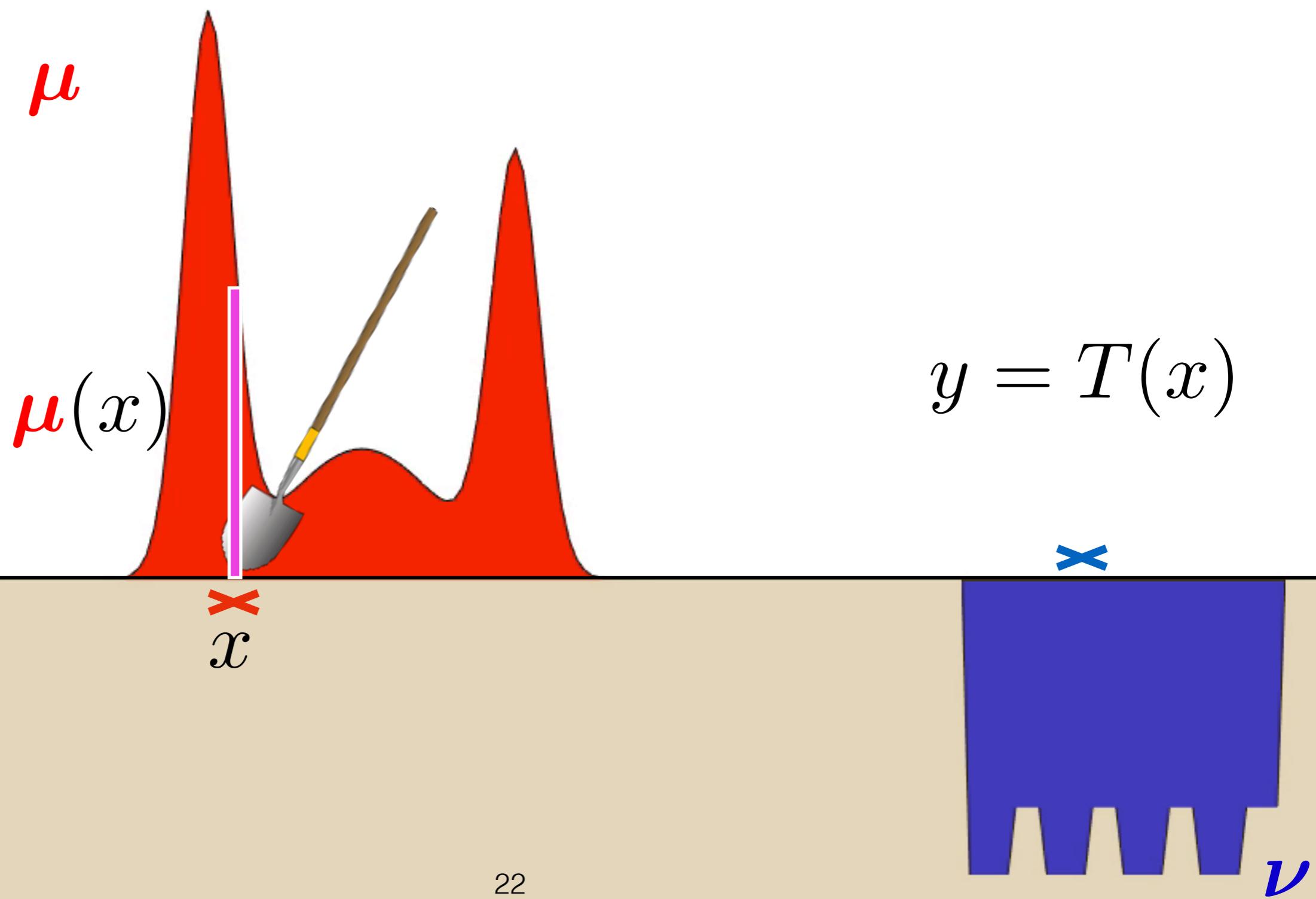
Origins: Monge's Problem

In 1781 however...



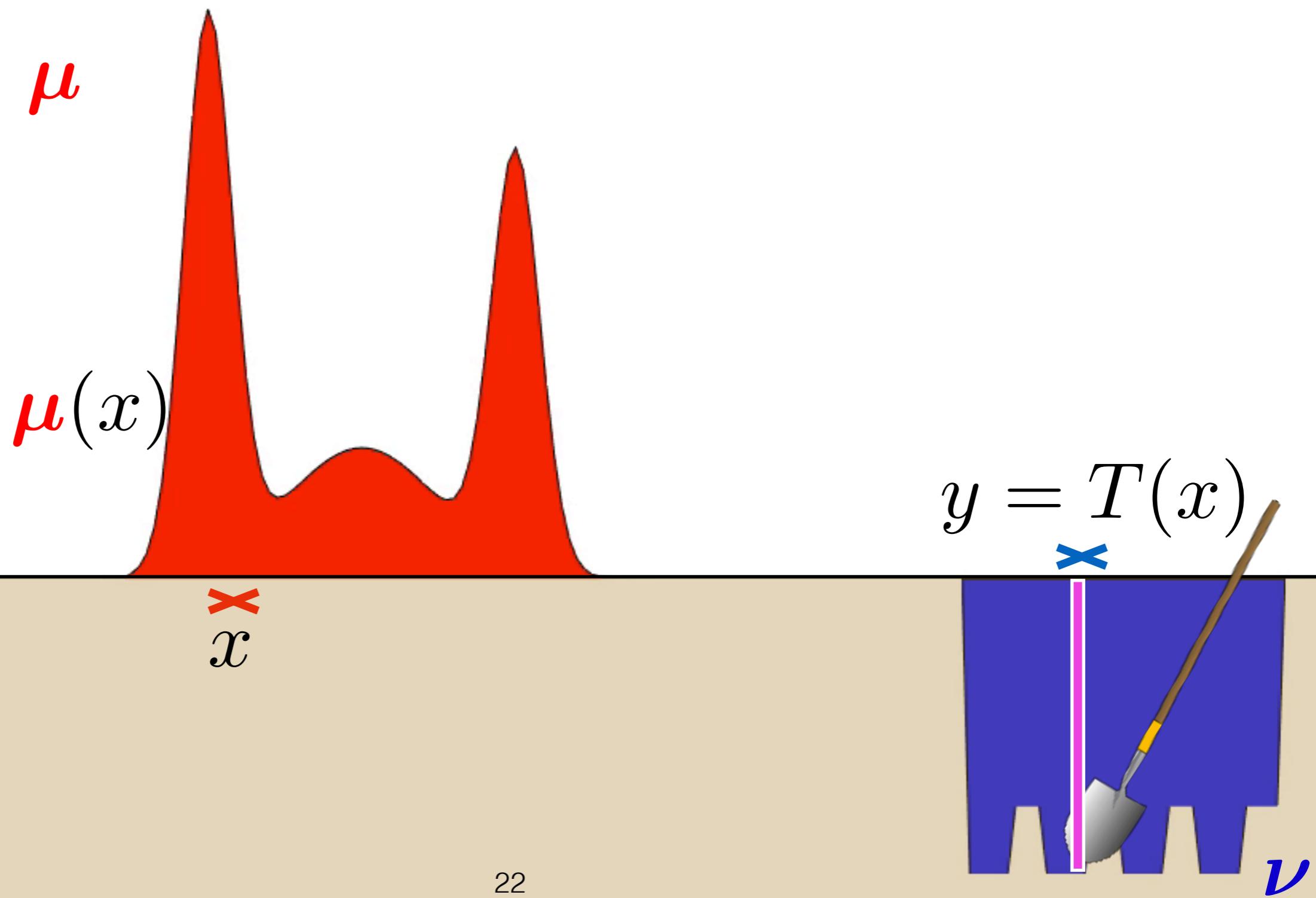
Origins: Monge's Problem

In 1781 however...



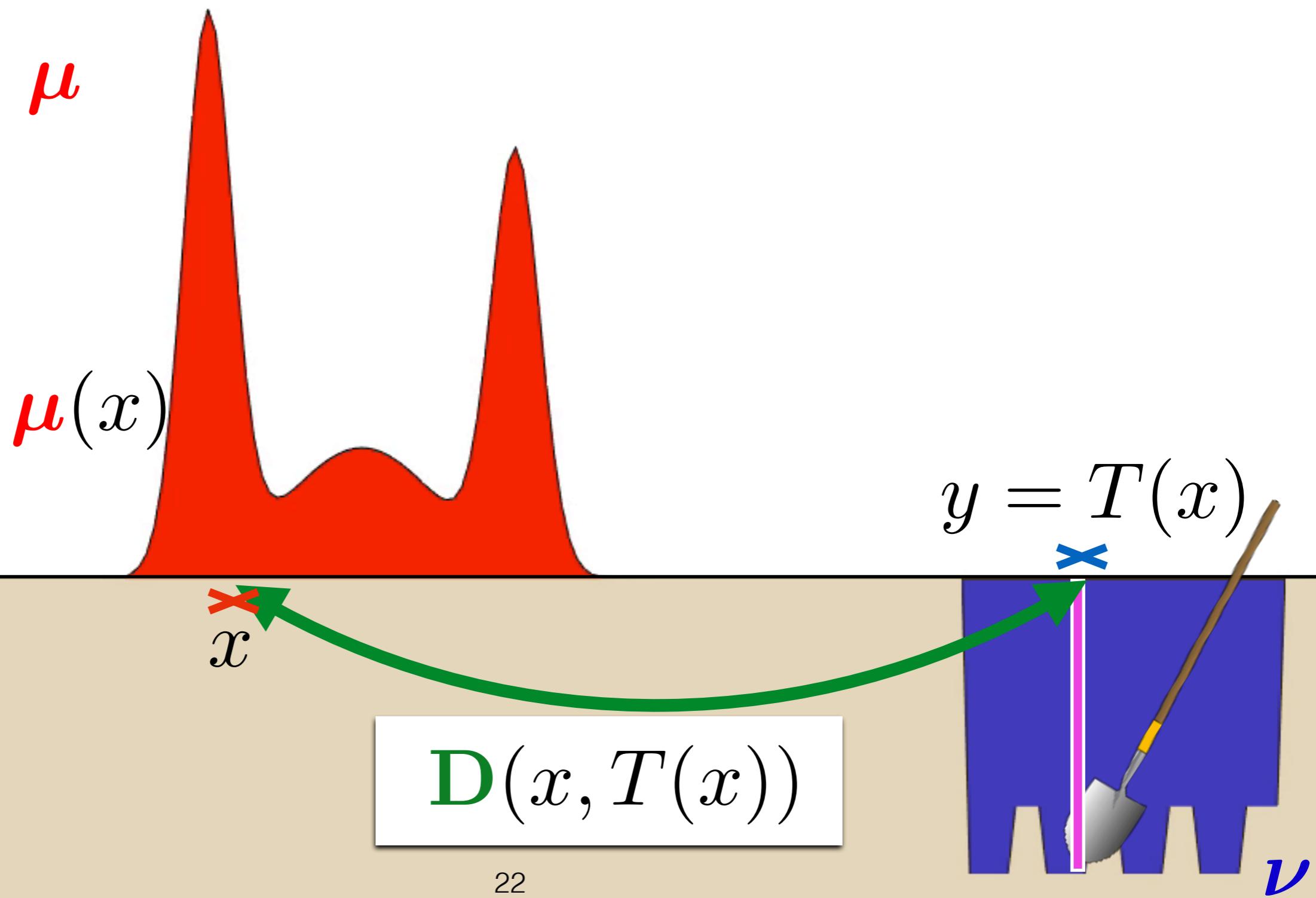
Origins: Monge's Problem

In 1781 however...



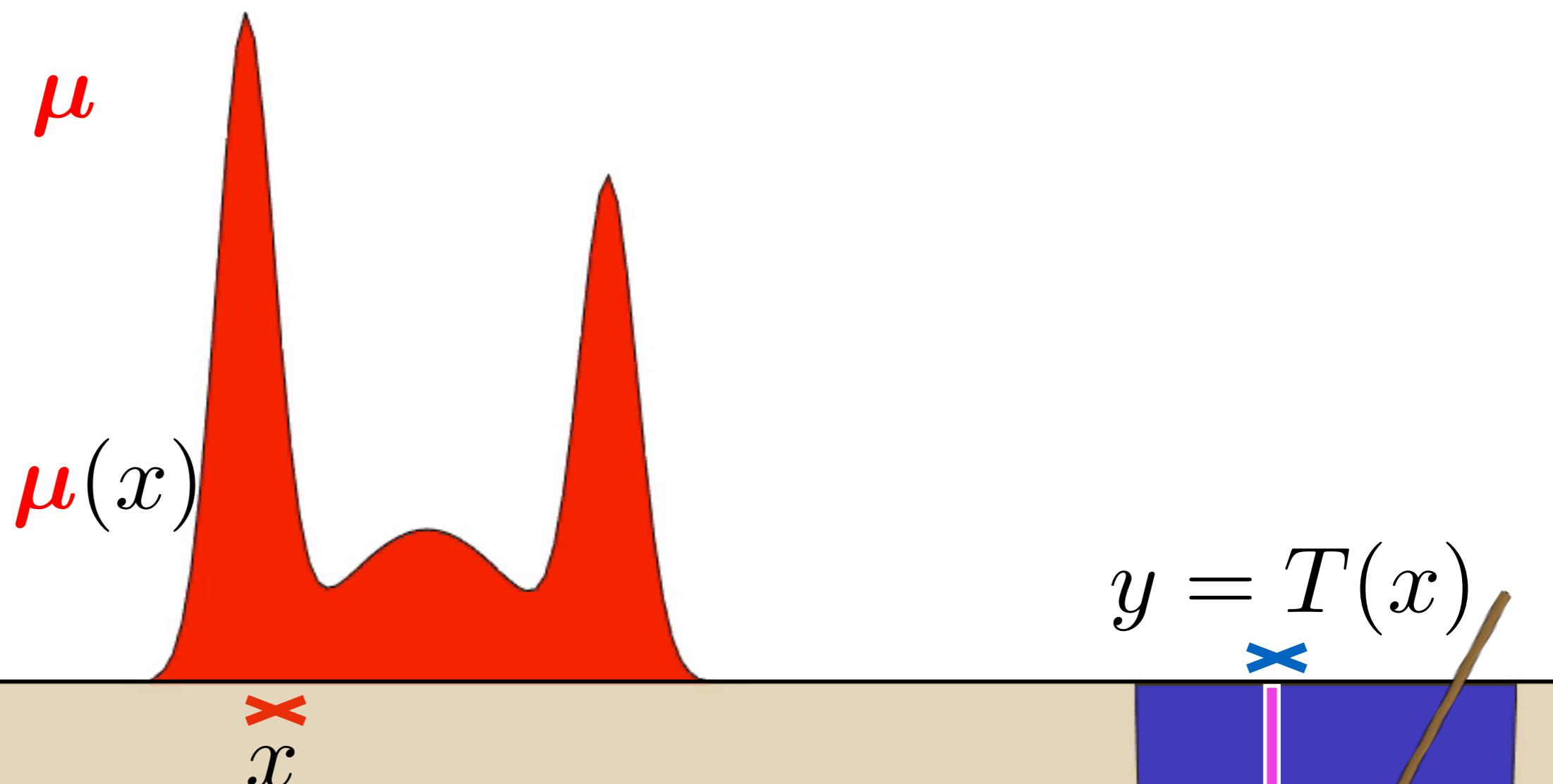
Origins: Monge's Problem

In 1781 however...



Origins: Monge's Problem

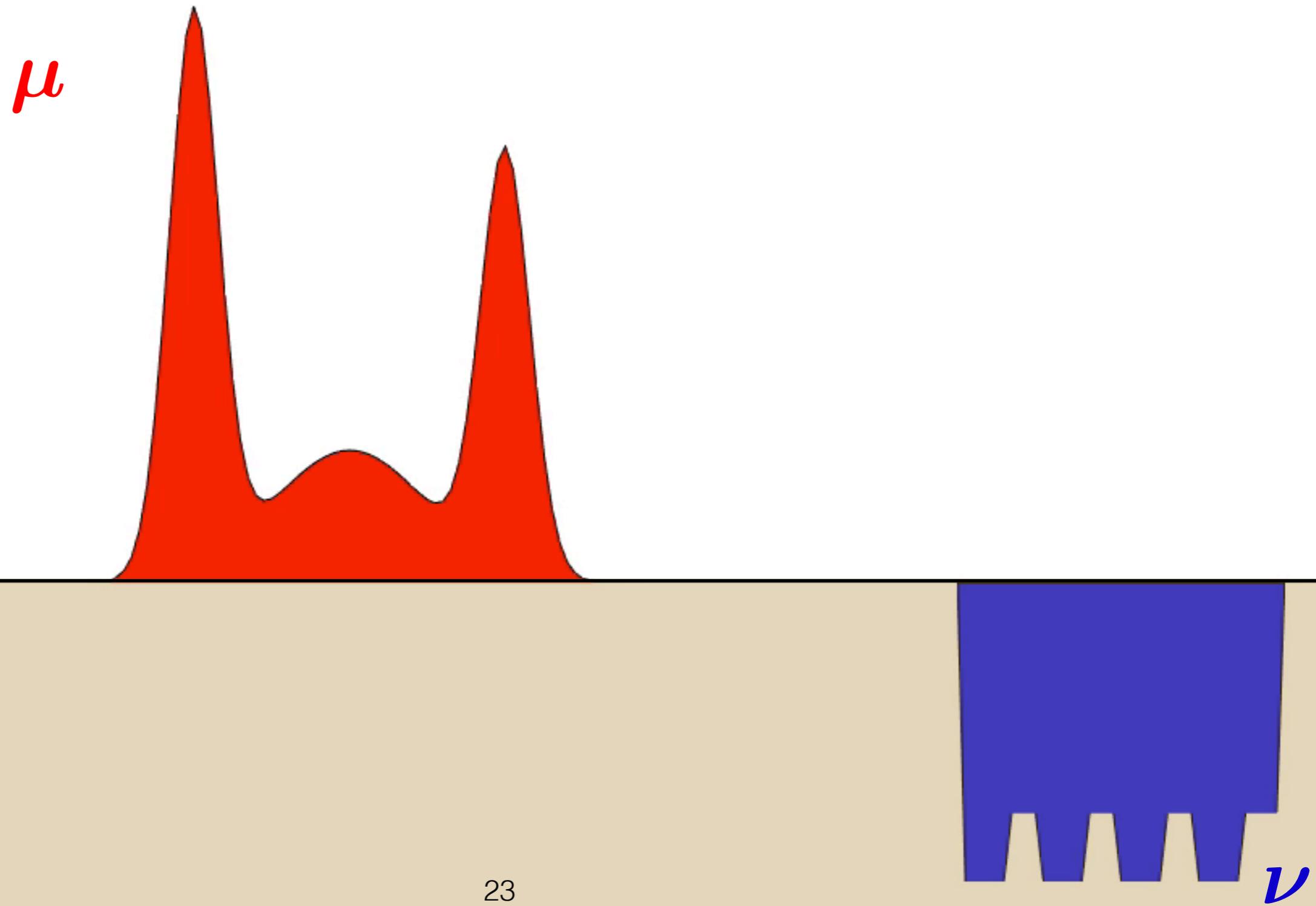
In 1781 however...



work: $\mu(x) D(x, T(x))$

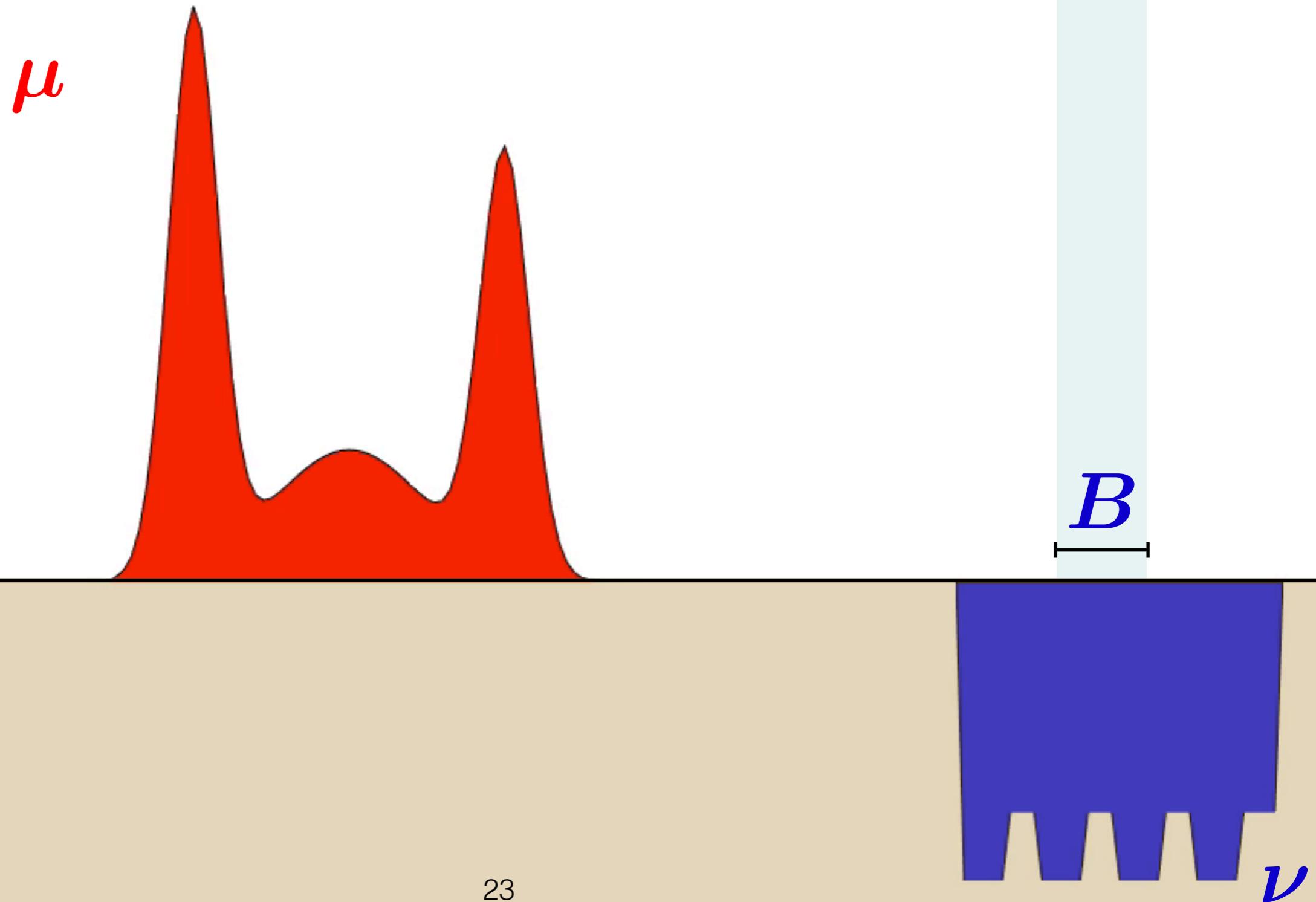
Origins: Monge's Problem

T must map red to blue.



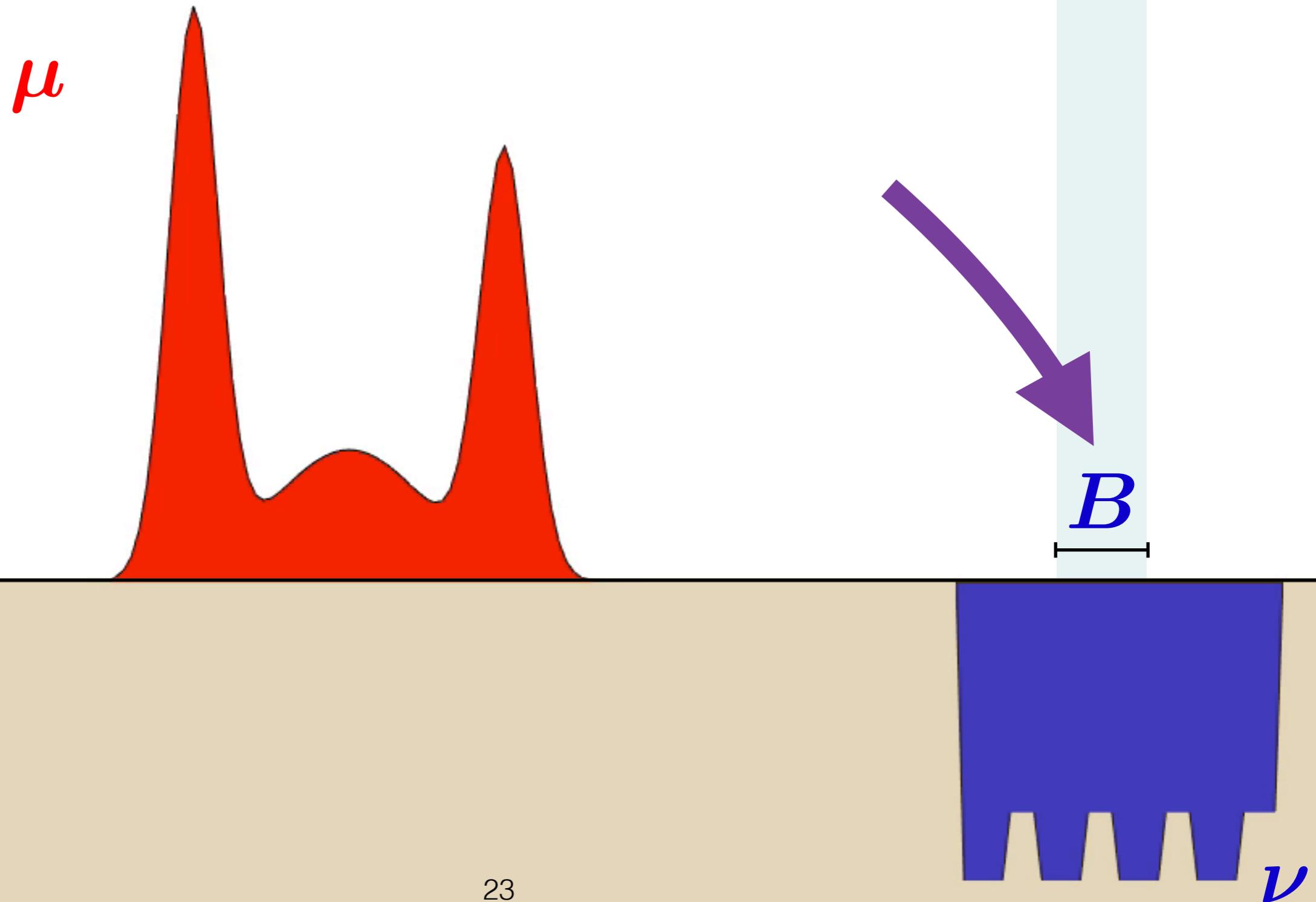
Origins: Monge's Problem

T must map red to blue.



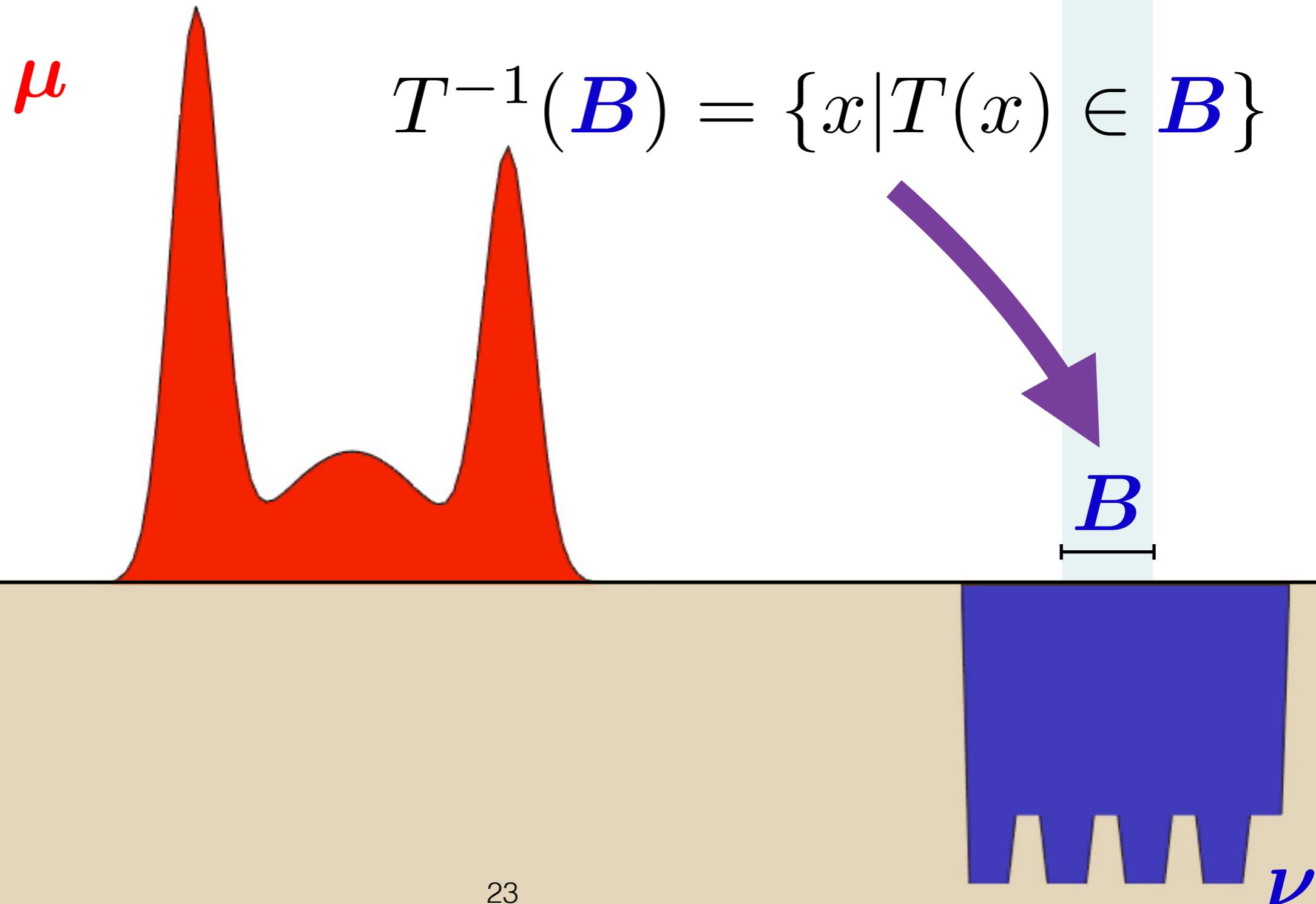
Origins: Monge's Problem

T must map red to blue.



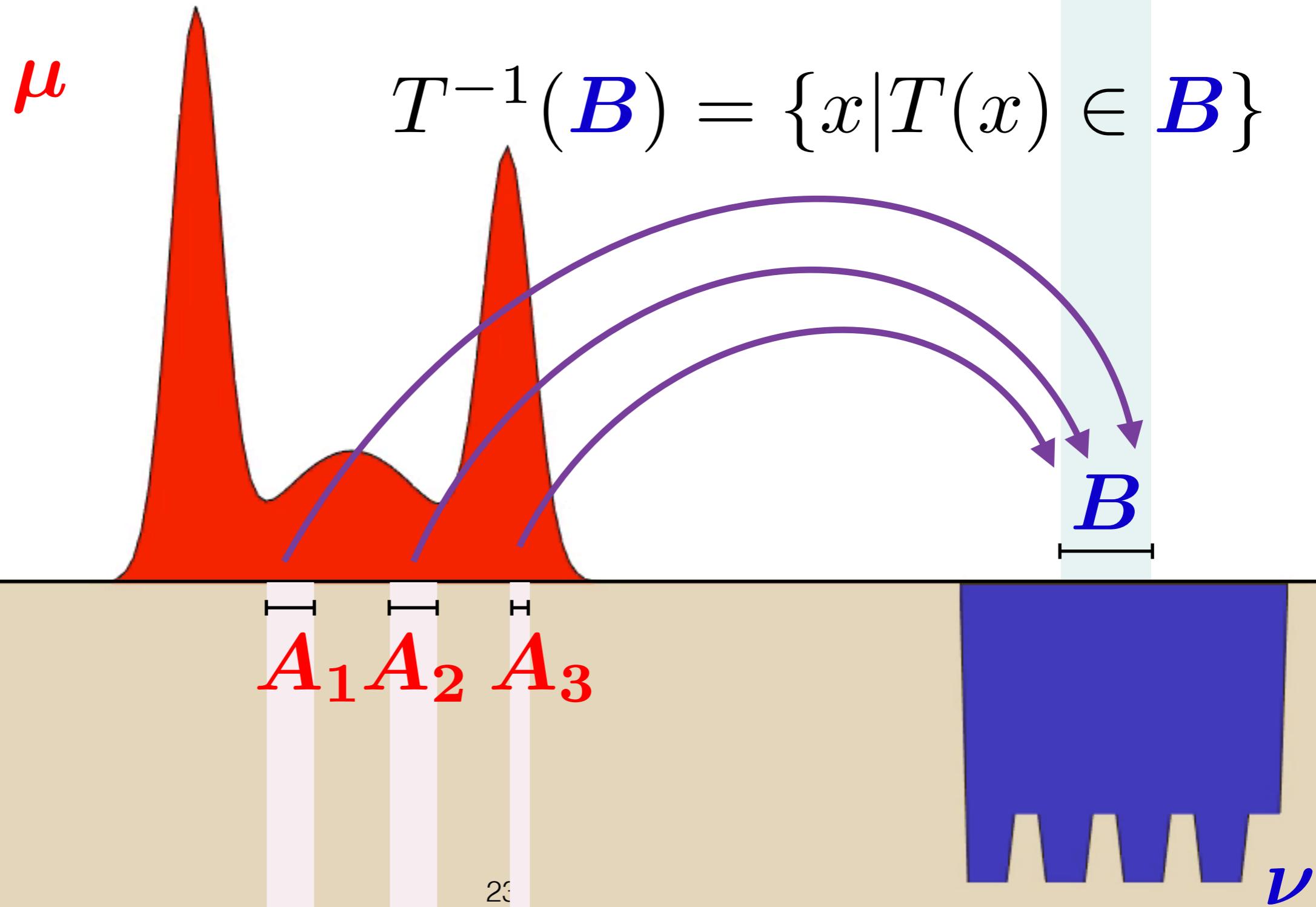
Origins: Monge's Problem

T must map red to blue.



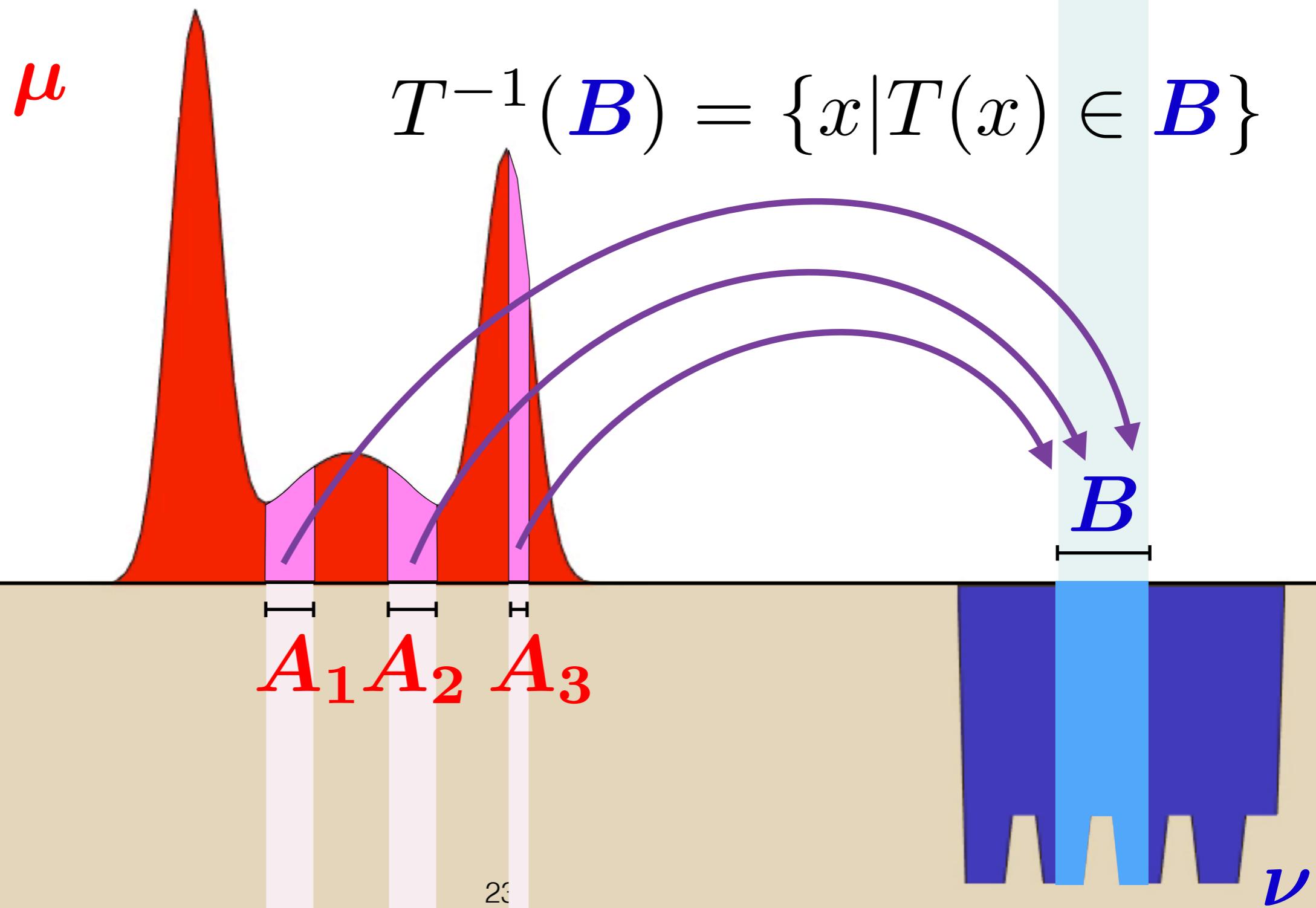
Origins: Monge's Problem

T must map red to blue.



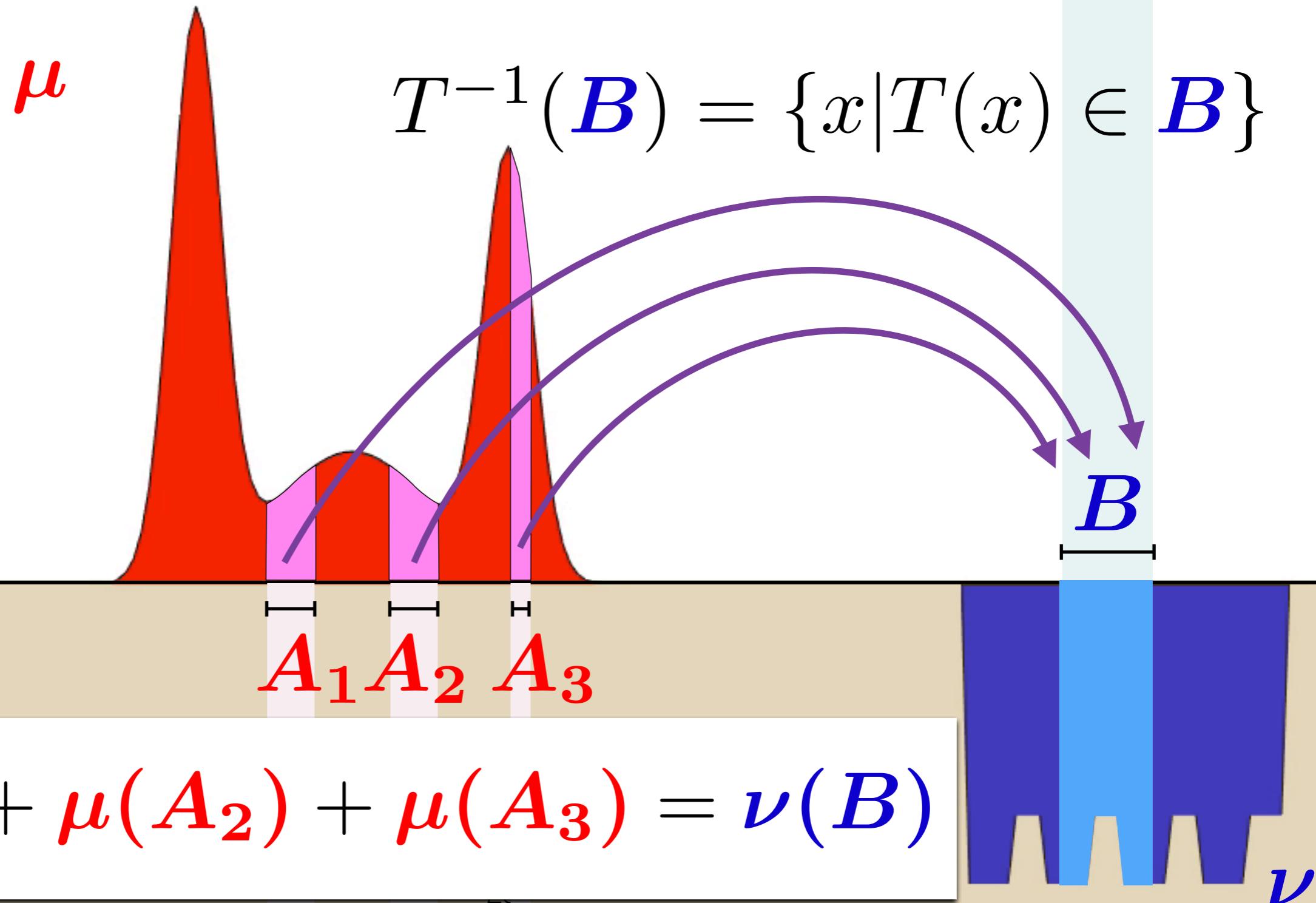
Origins: Monge's Problem

T must map red to blue.



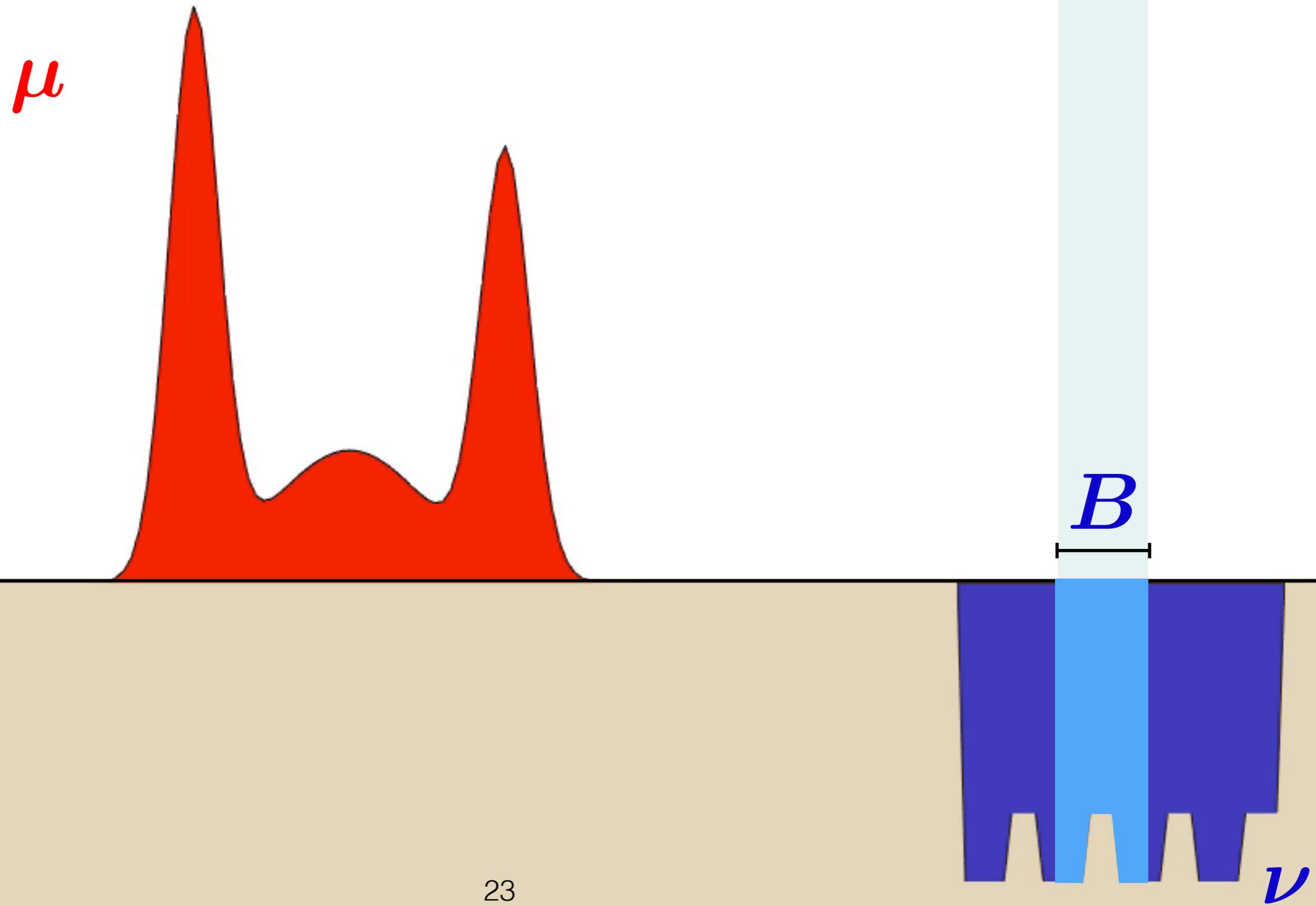
Origins: Monge's Problem

T must map red to blue.



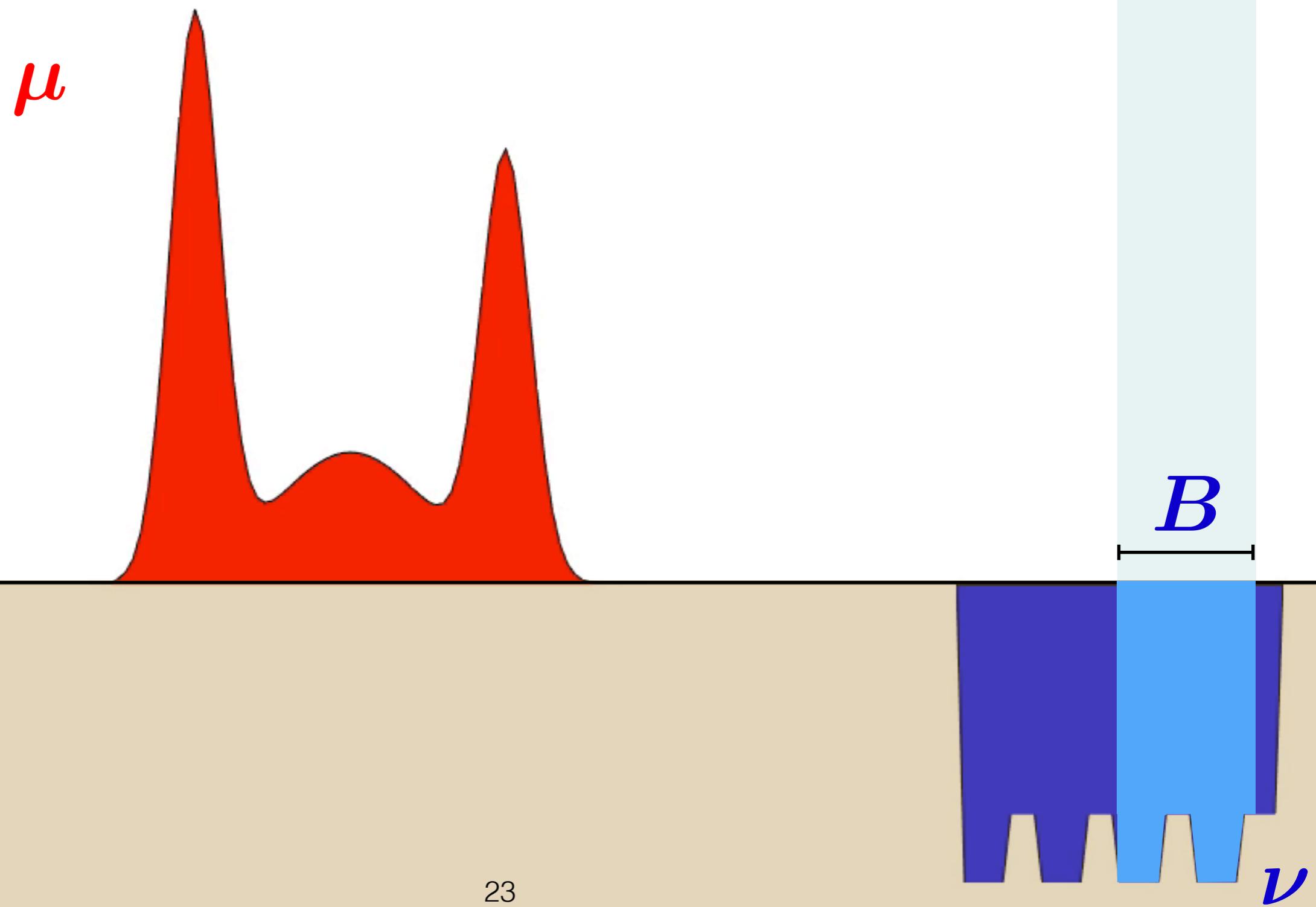
Origins: Monge's Problem

T must map red to blue.



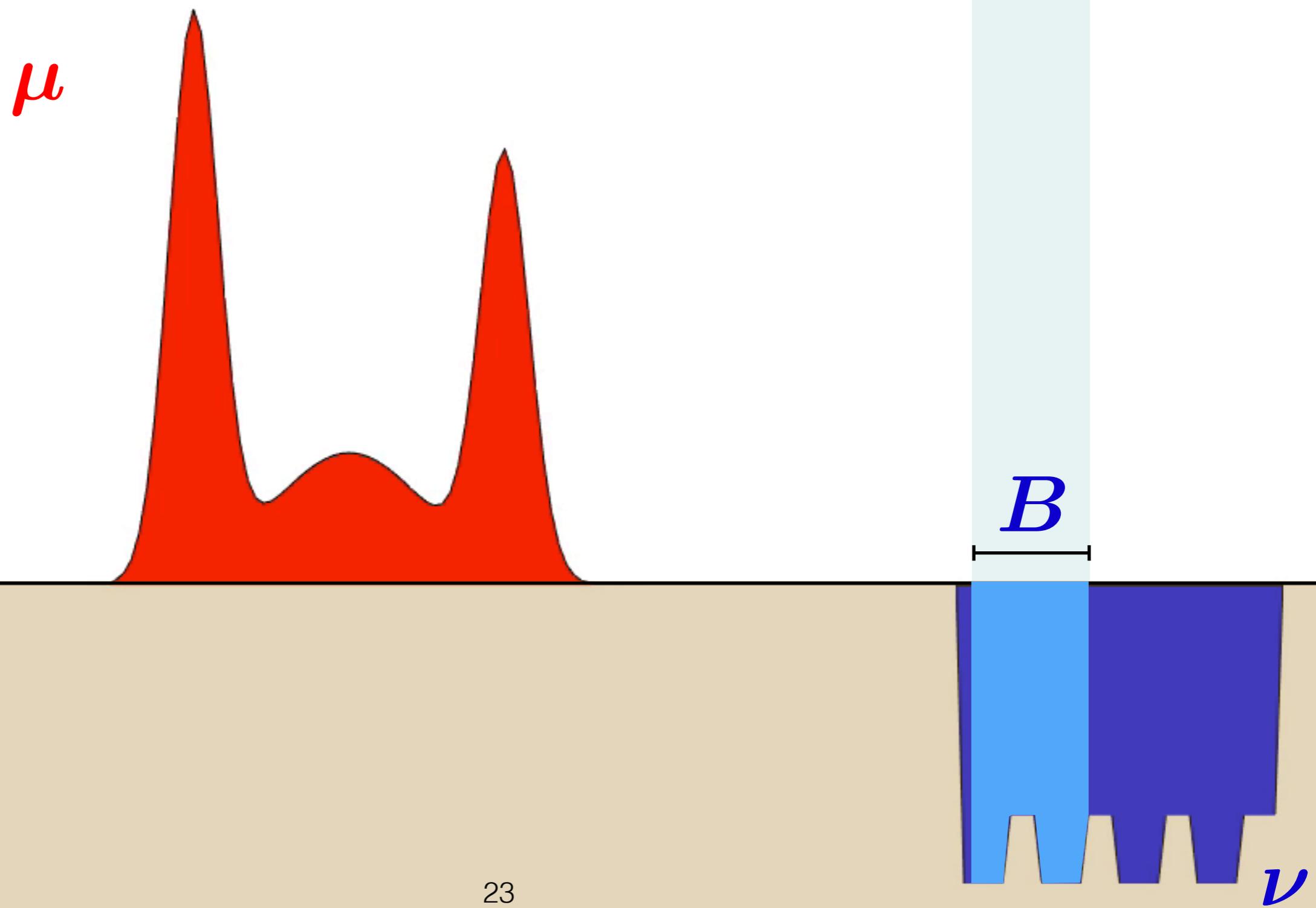
Origins: Monge's Problem

T must map red to blue.



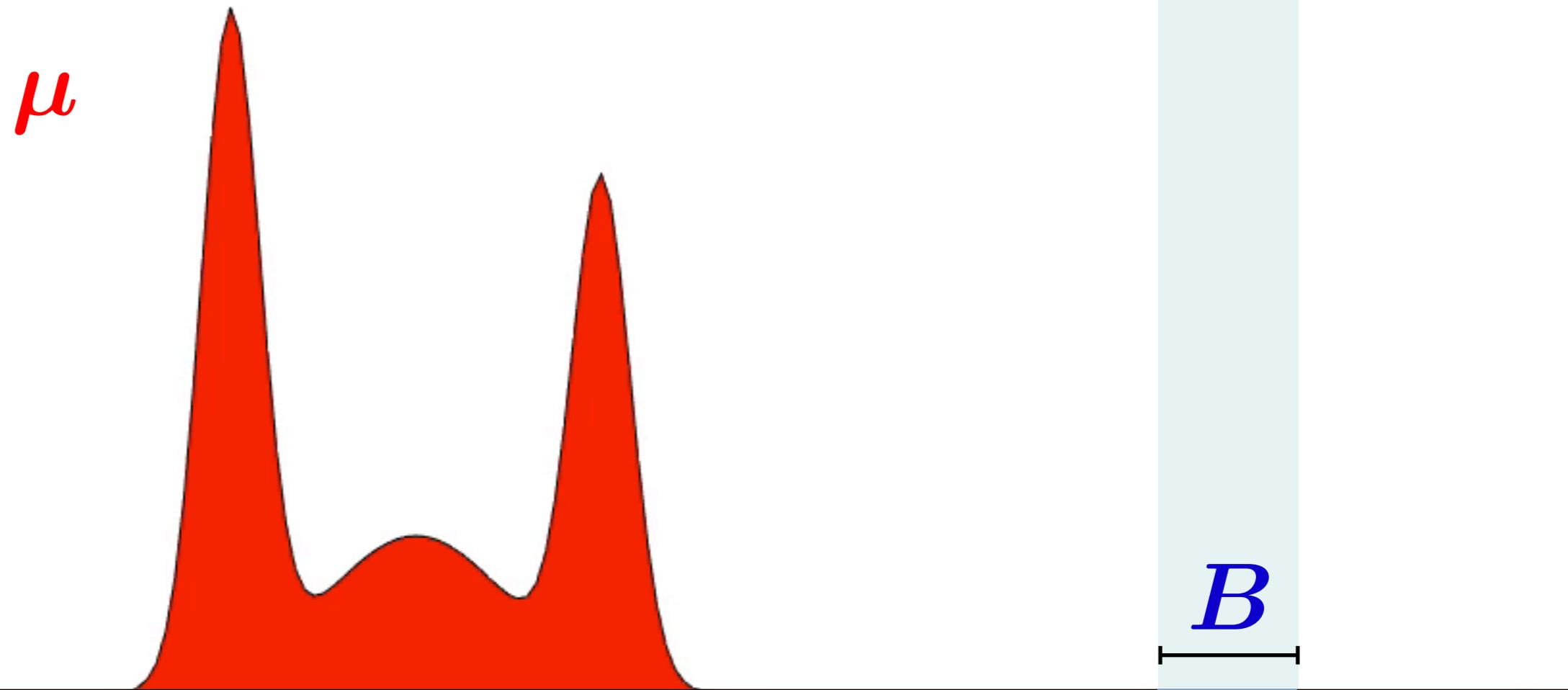
Origins: Monge's Problem

T must map red to blue.



Origins: Monge's Problem

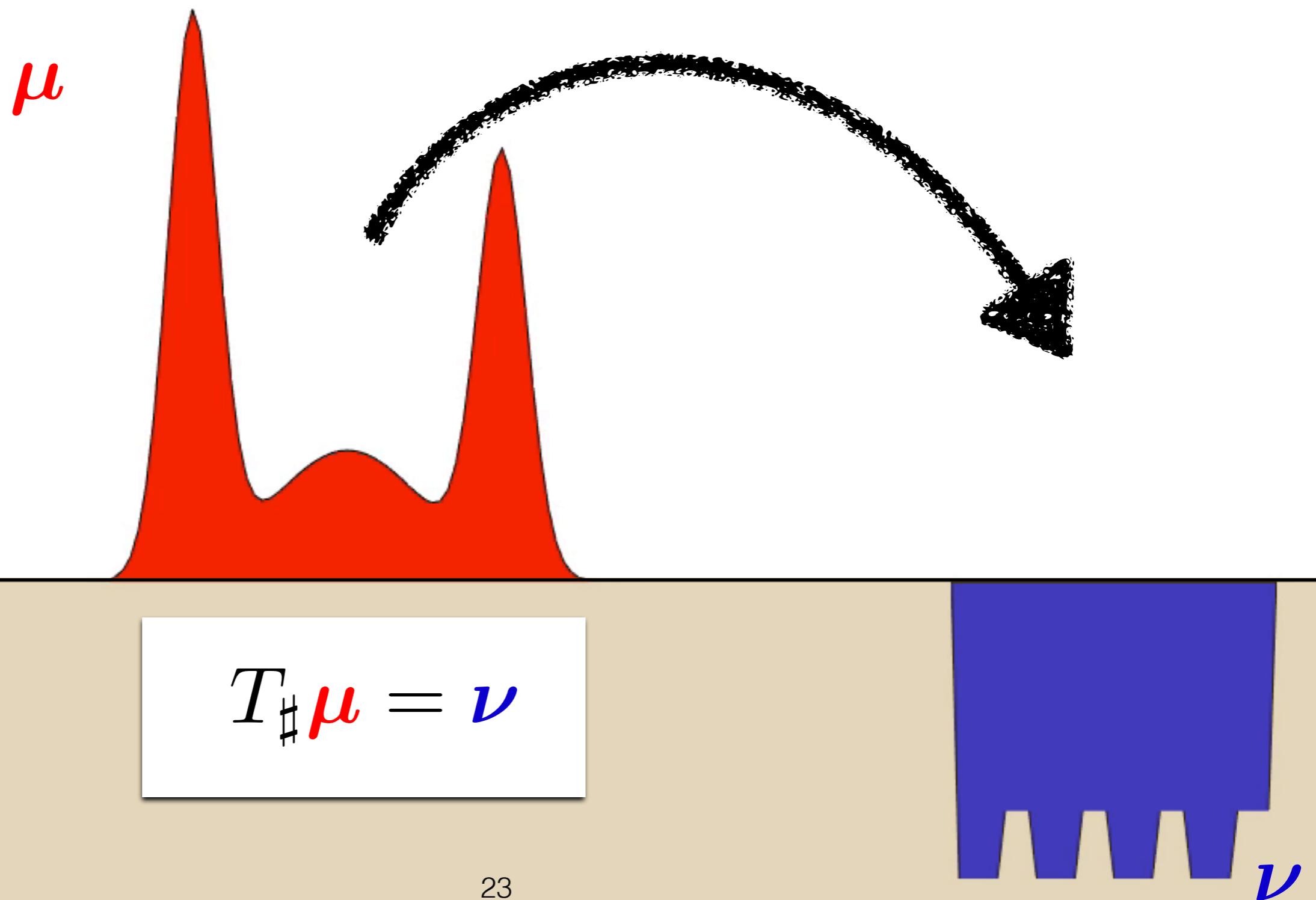
T must map red to blue.



$$\forall \mathbf{B}, \mu(T^{-1}(\mathbf{B})) = \nu(\mathbf{B})$$

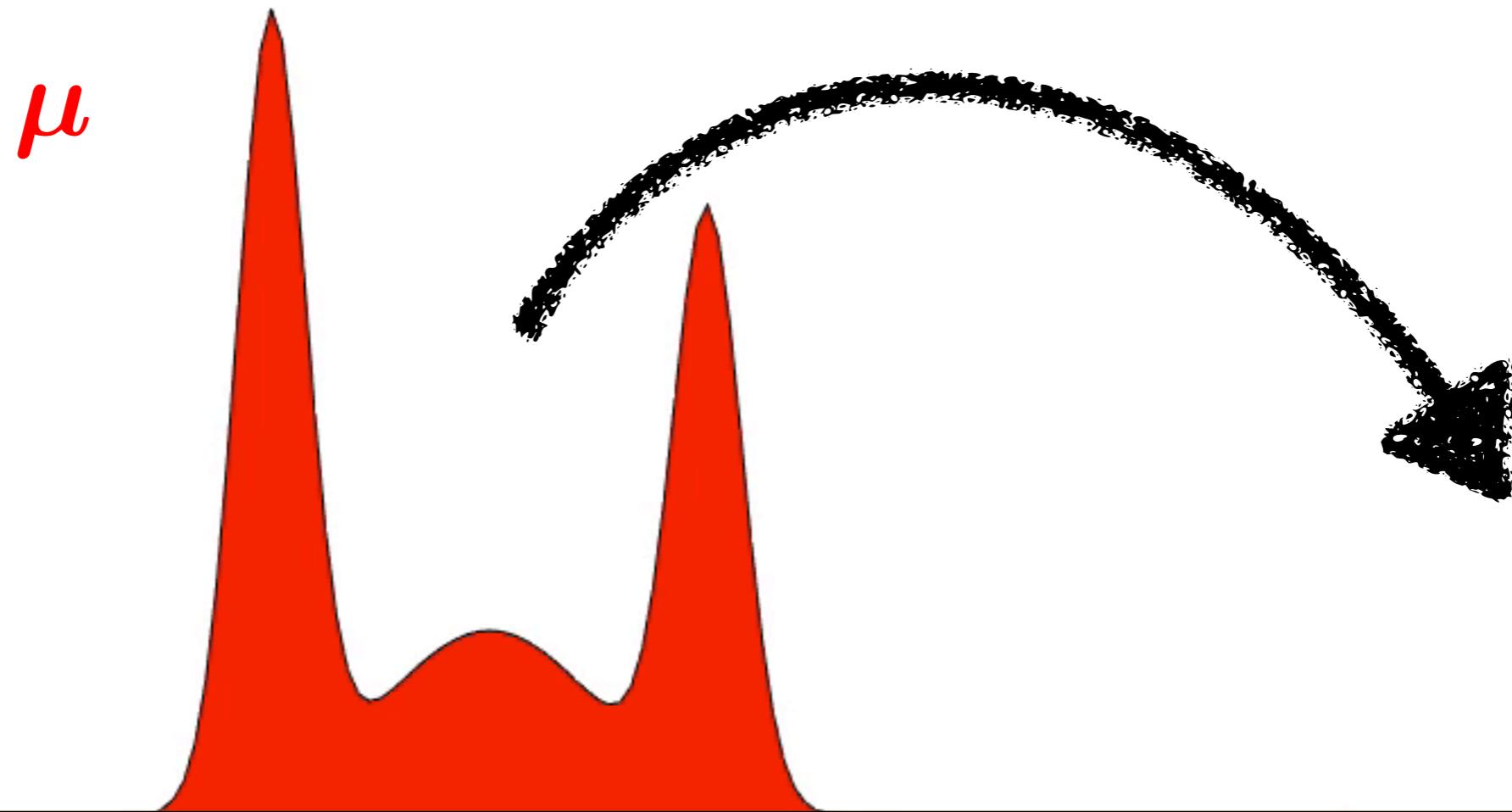
Origins: Monge's Problem

T must push-forward the red measure towards the blue



Origins: Monge's Problem

T must push-forward the red measure towards the blue



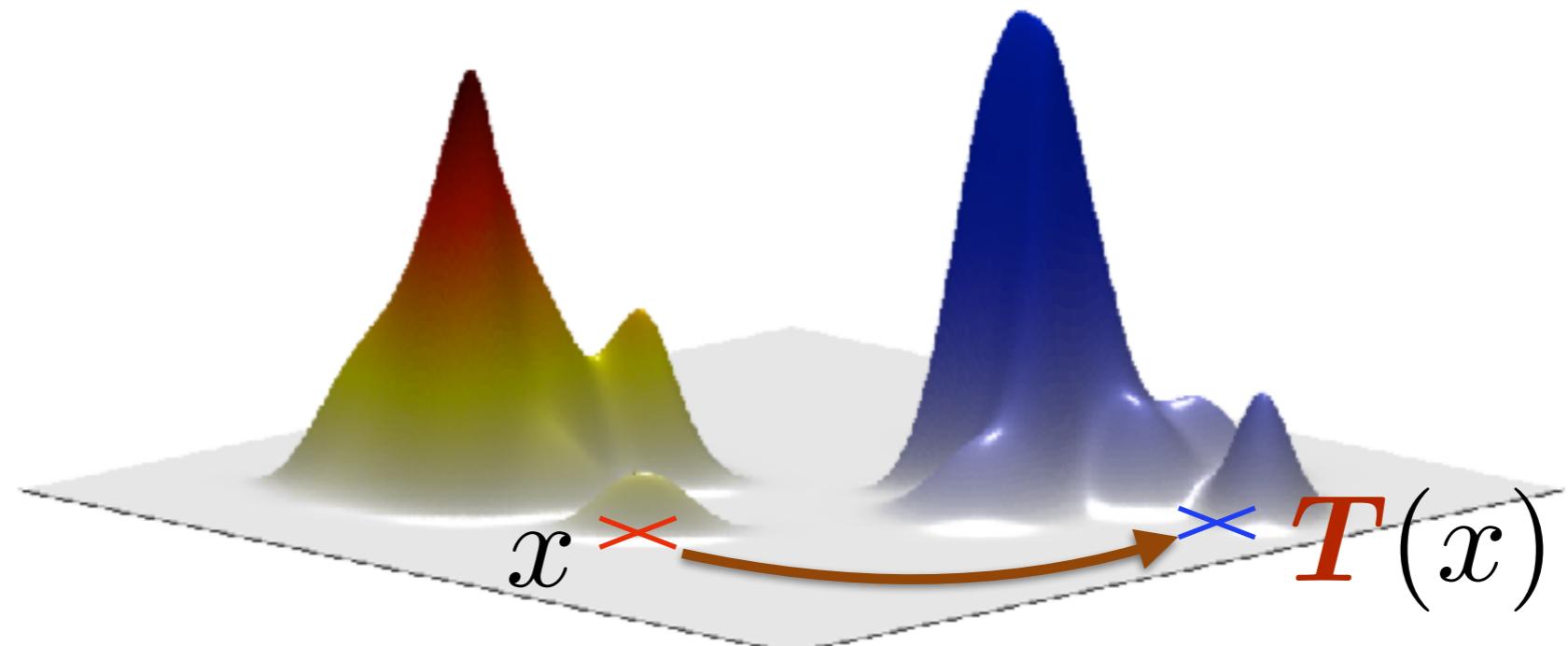
What T s.t. $T_{\#}\mu = \nu$
minimizes $\int \mathcal{D}(x, T(x)) \mu(dx)$?

Monge Problem

Ω a probability space, $\mathbf{c} : \Omega \times \Omega \rightarrow \mathbb{R}$.
 μ, ν two probability measures in $\mathcal{P}(\Omega)$.

[Monge'81] problem: find a map $\mathbf{T} : \Omega \rightarrow \Omega$

$$\inf_{\mathbf{T} \sharp \mu = \nu} \int_{\Omega} \mathbf{c}(x, \mathbf{T}(x)) \mu(dx)$$



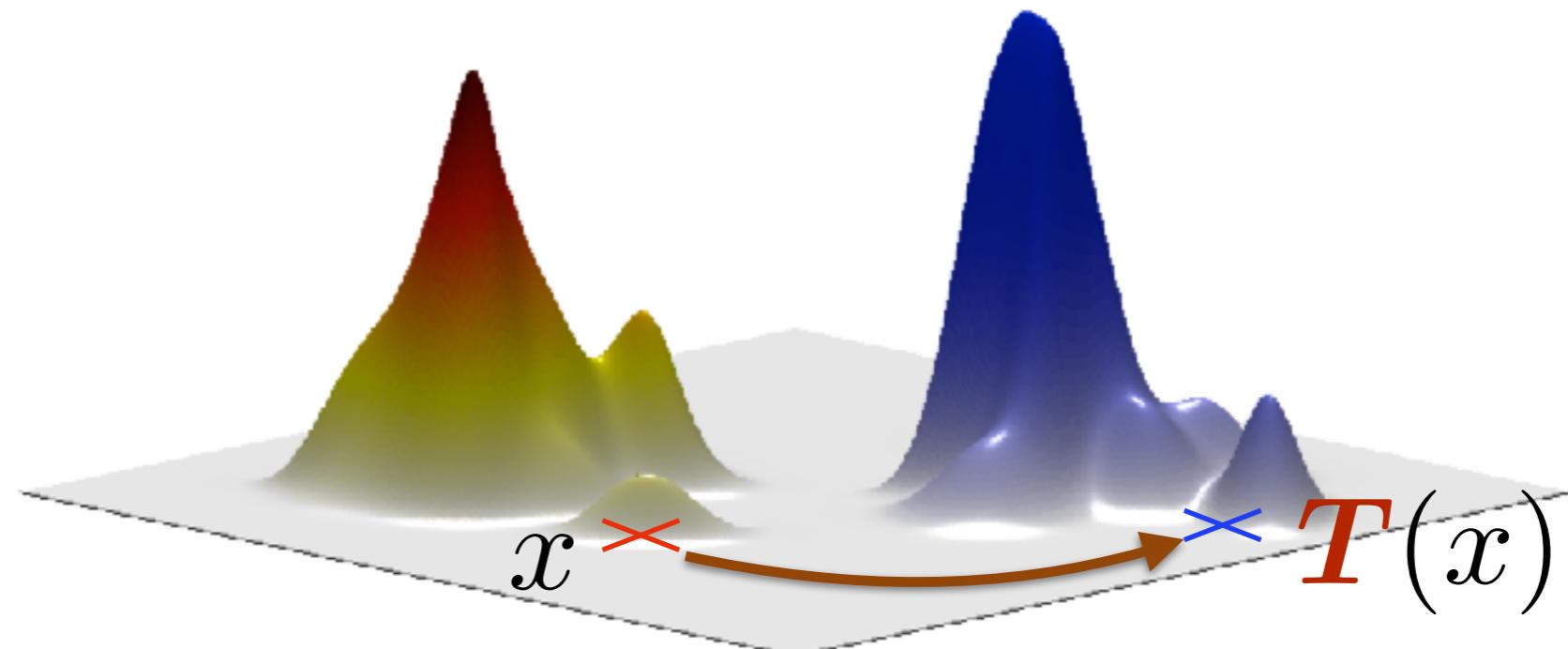
Monge Problem

Ω a probability space, $\mathbf{c} : \Omega \times \Omega \rightarrow \mathbb{R}$.
 μ, ν two probability measures in $\mathcal{P}(\Omega)$.

[Monge'81] problem: find a map $\mathbf{T} : \Omega \rightarrow \Omega$

[Brenier'87] If $\Omega = \mathbb{R}^d$, $\mathbf{c} = \|\cdot - \cdot\|^2$,

μ, ν a.c., then $\mathbf{T} = \nabla \mathbf{u}$, \mathbf{u} convex.

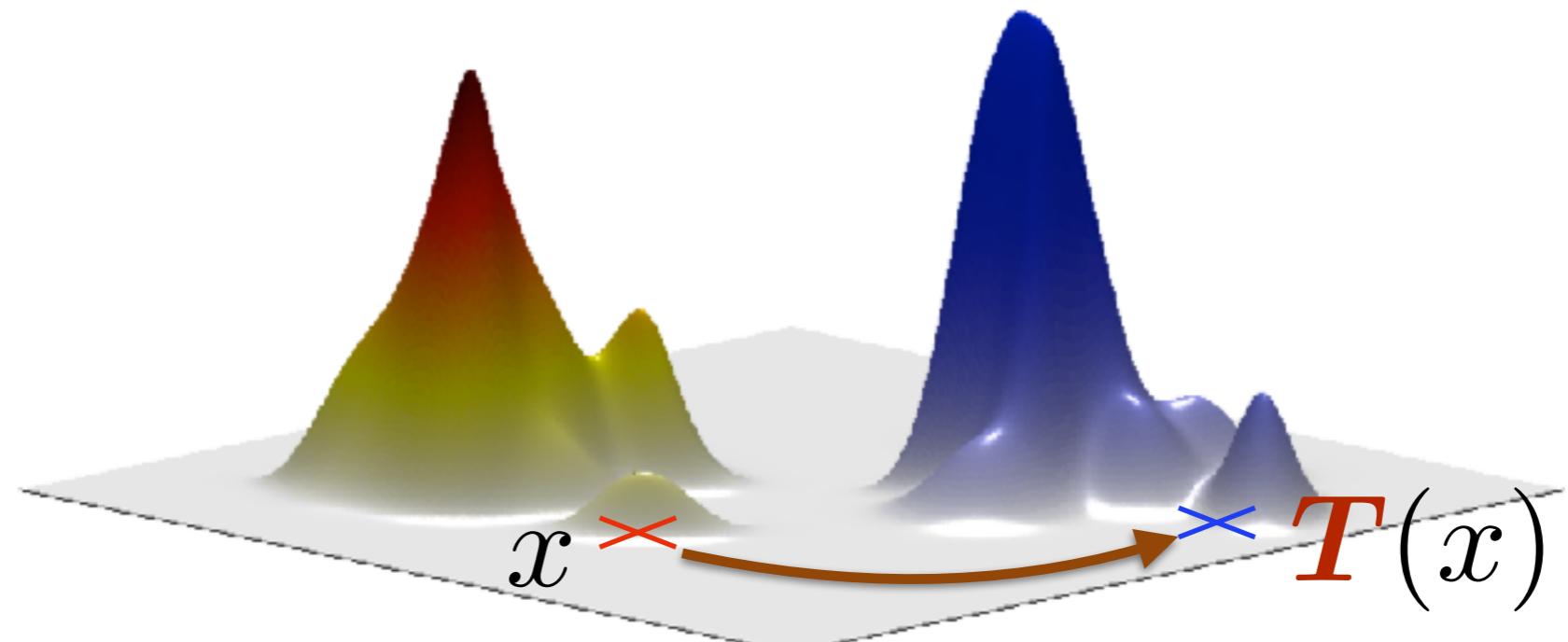


Monge Problem

Ω a probability space, $\mathbf{c} : \Omega \times \Omega \rightarrow \mathbb{R}$.
 μ, ν two probability measures in $\mathcal{P}(\Omega)$.

[Monge'81] problem: find a map $\mathbf{T} : \Omega \rightarrow \Omega$

$$\inf_{\mathbf{T} \sharp \mu = \nu} \int_{\Omega} \mathbf{c}(x, \mathbf{T}(x)) \mu(dx)$$

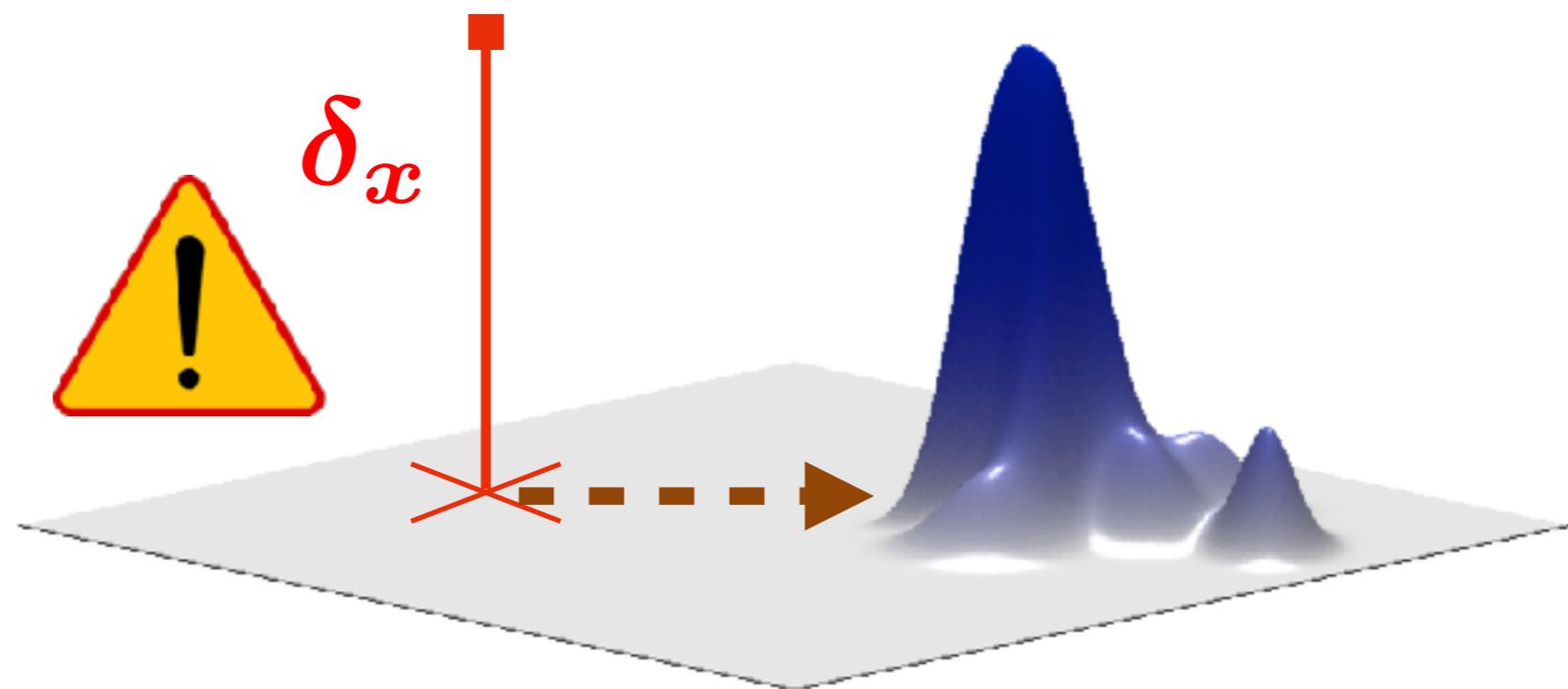


Monge Problem

Ω a probability space, $\mathbf{c} : \Omega \times \Omega \rightarrow \mathbb{R}$.
 μ, ν two probability measures in $\mathcal{P}(\Omega)$.

[Monge'81] problem: find a map $\mathbf{T} : \Omega \rightarrow \Omega$

$$\inf_{\mathbf{T} \# \mu = \nu} \int_{\Omega} \mathbf{c}(x, \mathbf{T}(x)) \mu(dx)$$

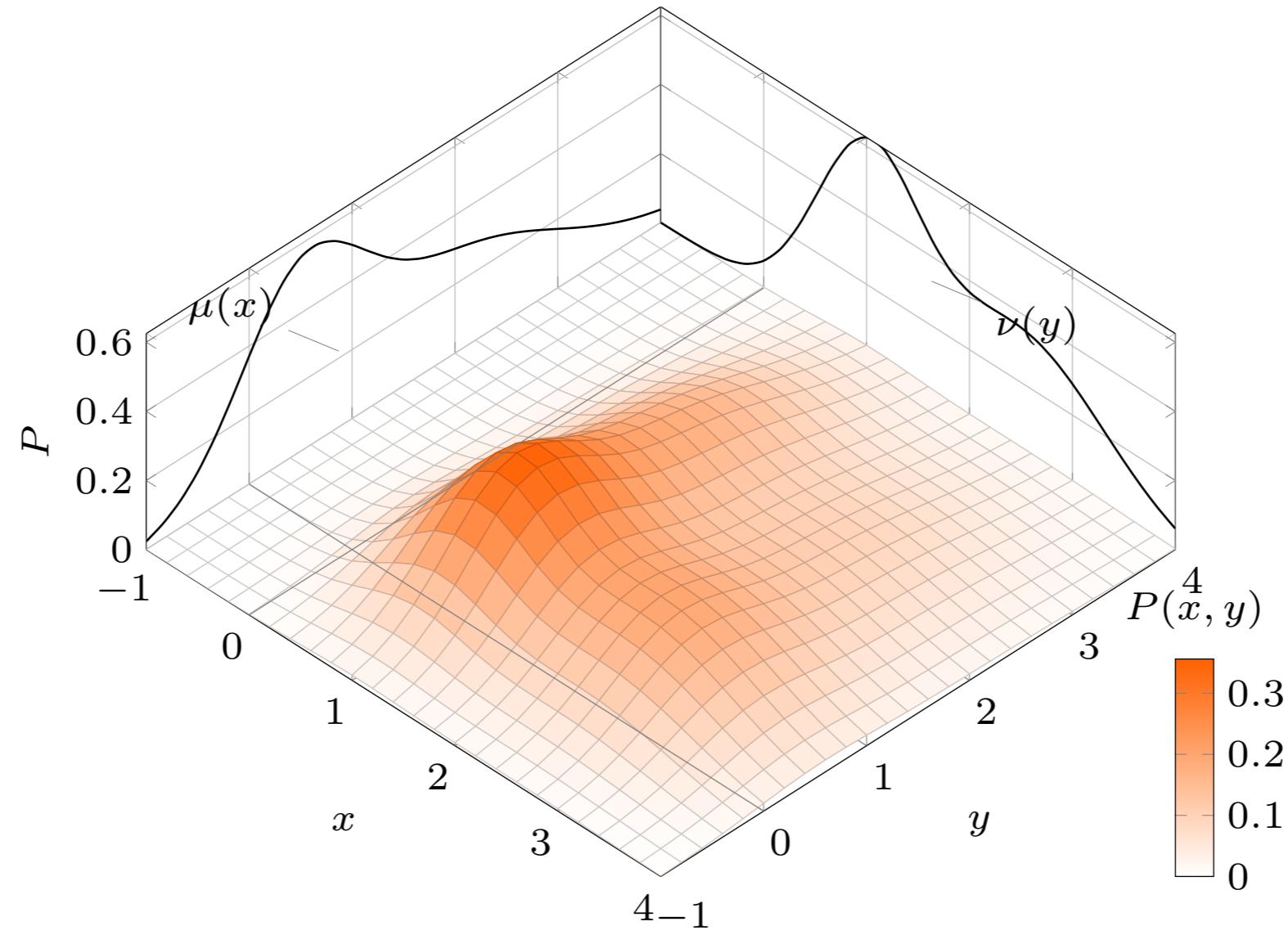


[Kantorovich'42] Relaxation

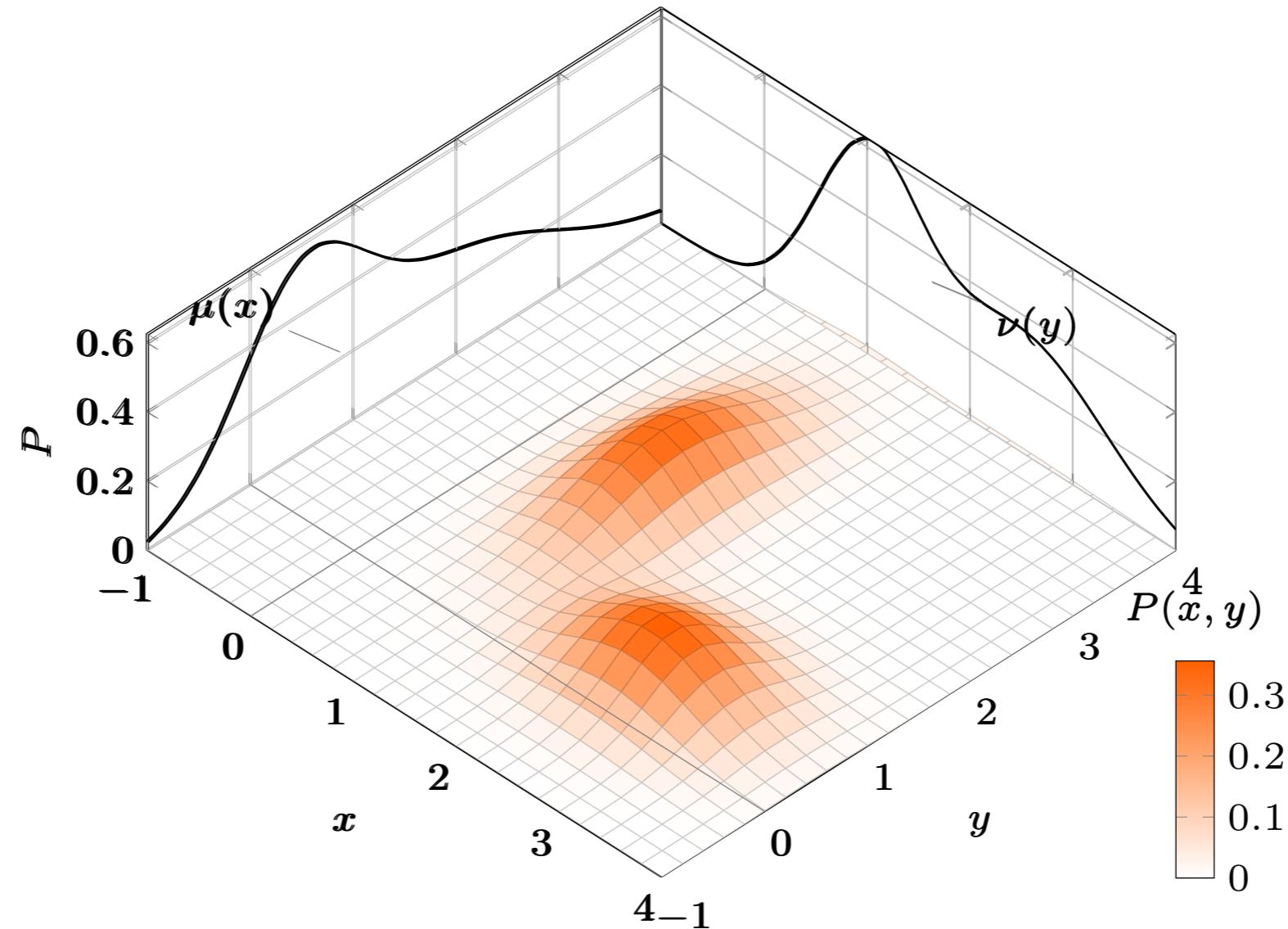
- Instead of maps $\mathbf{T} : \Omega \rightarrow \Omega$, consider probabilistic maps, i.e. **couplings** $\mathbf{P} \in \mathcal{P}(\Omega \times \Omega)$:

$$\Pi(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \{ \mathbf{P} \in \mathcal{P}(\Omega \times \Omega) \mid \forall \mathbf{A}, \mathbf{B} \subset \Omega, \\ \mathbf{P}(\mathbf{A} \times \Omega) = \boldsymbol{\mu}(\mathbf{A}), \\ \mathbf{P}(\Omega \times \mathbf{B}) = \boldsymbol{\nu}(\mathbf{B}) \}$$

[Kantorovich'42] Relaxation

$$\Pi(\mu, \nu) \stackrel{\text{def}}{=} \{P \in \mathcal{P}(\Omega \times \Omega) \mid \forall A, B \subset \Omega, P(A \times \Omega) = \mu(A), P(\Omega \times B) = \nu(B)\}$$


[Kantorovich'42] Relaxation

$$\Pi(\mu, \nu) \stackrel{\text{def}}{=} \{P \in \mathcal{P}(\Omega \times \Omega) \mid \forall A, B \subset \Omega, P(A \times \Omega) = \mu(A), P(\Omega \times B) = \nu(B)\}$$


Kantorovich Problem

Def. Given μ, ν in $\mathcal{P}(\Omega)$; a cost function c on $\Omega \times \Omega$, the Kantorovich problem is

$$\inf_{P \in \Pi(\mu, \nu)} \iint c(x, y) P(dx, dy).$$

PRIMAL

Kantorovich Problem

Def. Given μ, ν in $\mathcal{P}(\Omega)$; a cost function c on $\Omega \times \Omega$, the Kantorovich problem is

$$\inf_{P \in \Pi(\mu, \nu)} \iint c(x, y) P(dx, dy).$$

PRIMAL

$$\sup_{\substack{\varphi \in L_1(\mu), \psi \in L_1(\nu) \\ \varphi(x) + \psi(y) \leq c(x, y)}} \int \varphi d\mu + \int \psi d\nu.$$

DUAL

(Kantorovich) Wasserstein Distances

Let $p \geq 1$.

Let $\mathbf{c} := \mathbf{D}$, a metric.

Def. The p -Wasserstein distance between μ, ν in $\mathcal{P}(\Omega)$ is

$$W_p(\mu, \nu) \stackrel{\text{def}}{=} \left(\inf_{\mathbf{P} \in \Pi(\mu, \nu)} \iint \mathbf{D}(x, y)^p \mathbf{P}(dx, dy) \right)^{1/p}.$$

(Kantorovich) Wasserstein Distances

Let $p \geq 1$.

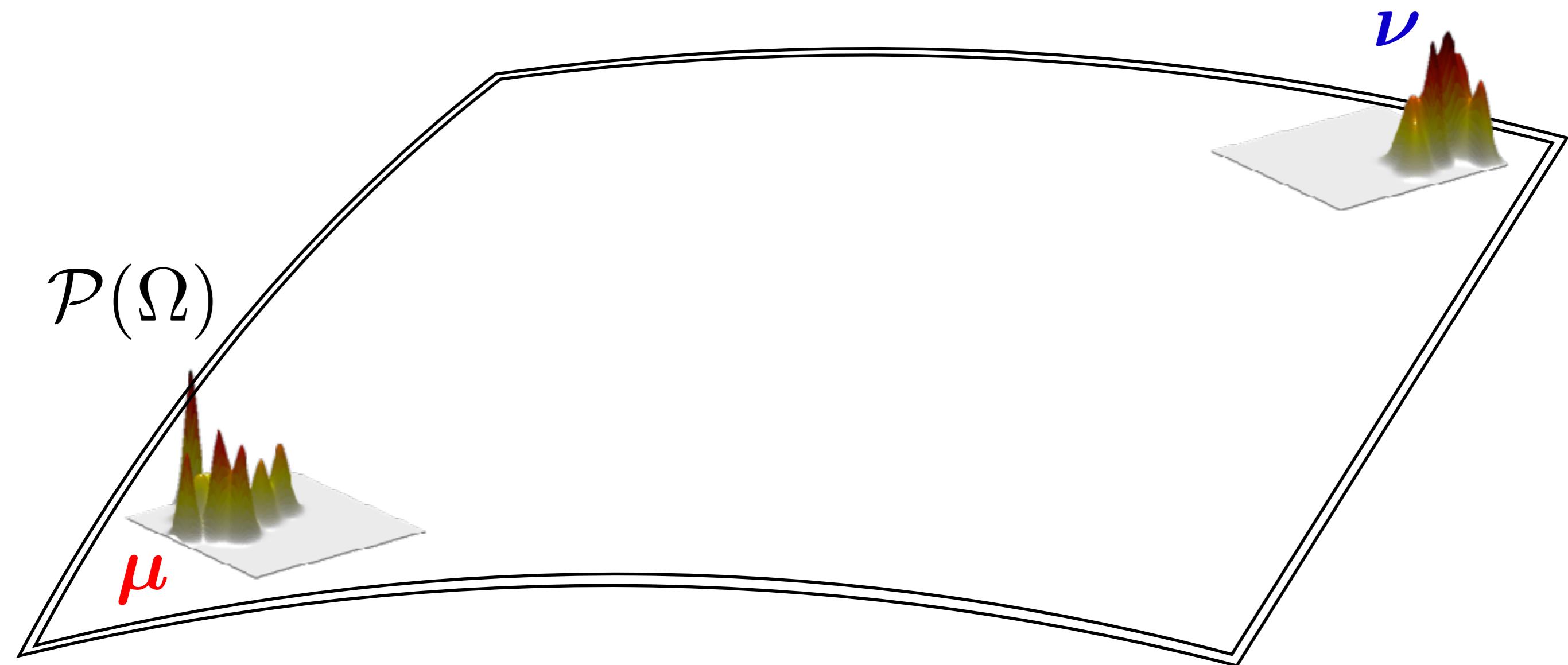
Let $\mathbf{c} := \mathbf{D}$, a metric.

Def. The p -Wasserstein distance between μ, ν in $\mathcal{P}(\Omega)$ is

$$W_p(\mu, \nu) \stackrel{\text{def}}{=} \left(\inf_{P \in \Pi(\mu, \nu)} \iint \mathbf{D}(x, y)^p P(dx, dy) \right)^{\frac{1}{p}}.$$

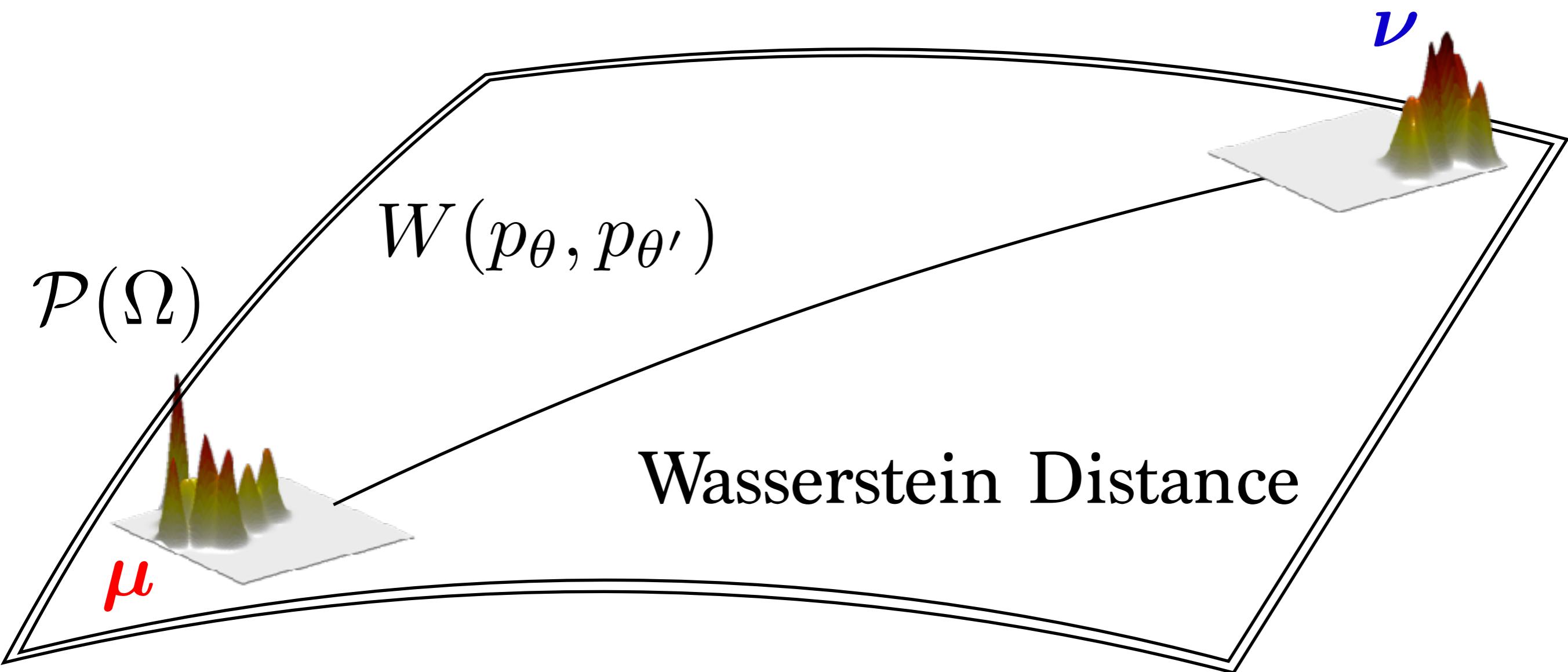
Optimal Transport Geometry

Very different geometry than standard information divergences (KL, Euclidean)



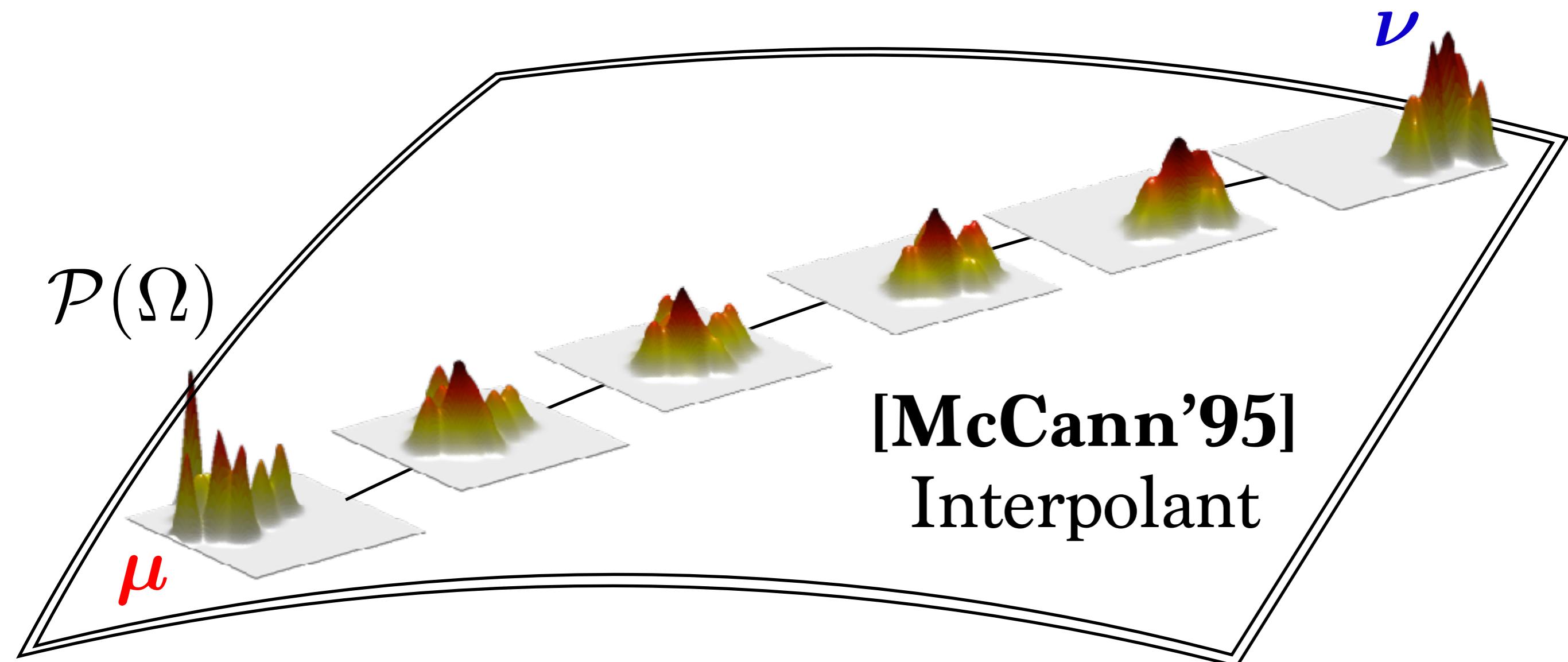
Optimal Transport Geometry

Very different geometry than standard information divergences (KL, Euclidean)



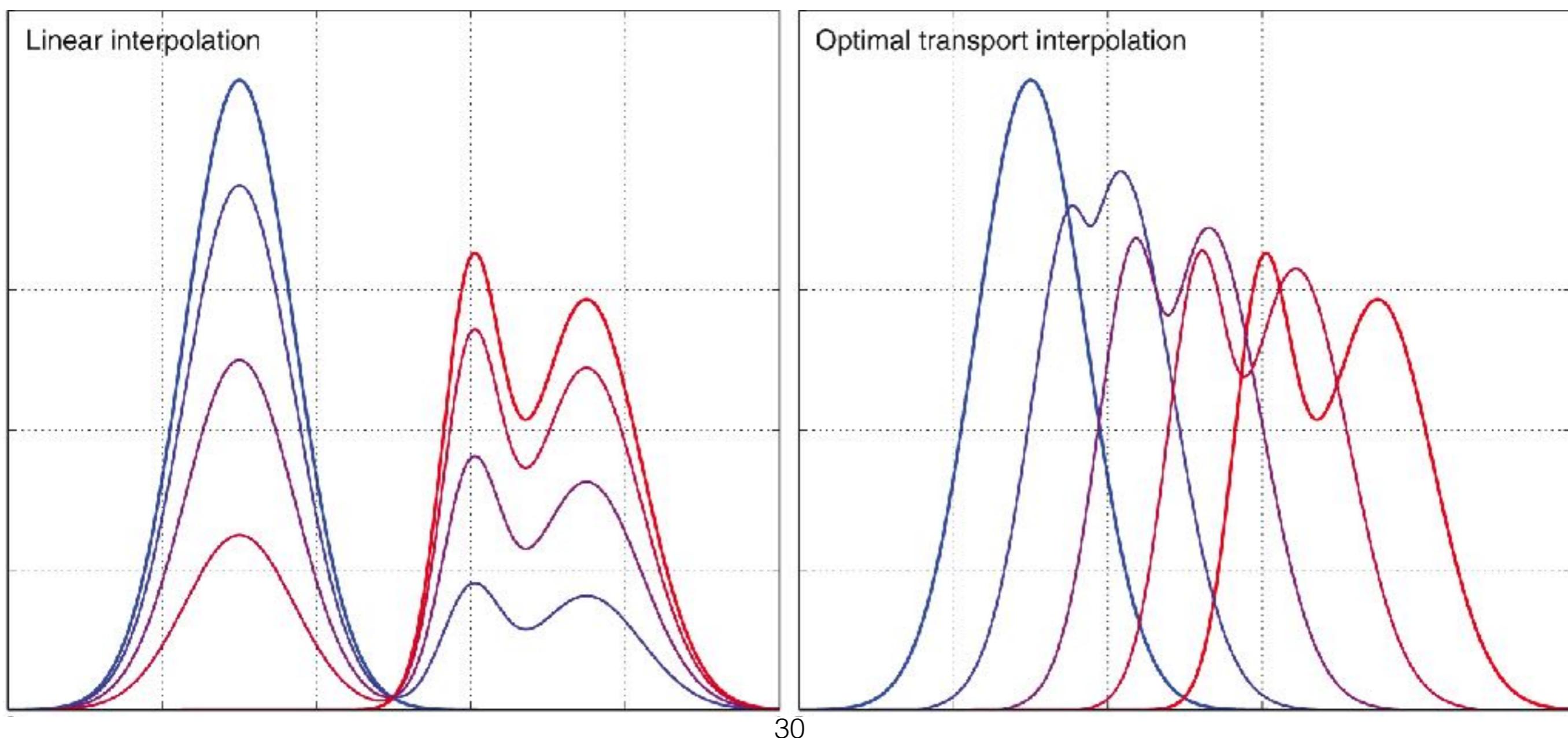
Optimal Transport Geometry

Very different geometry than standard information divergences (KL, Euclidean)



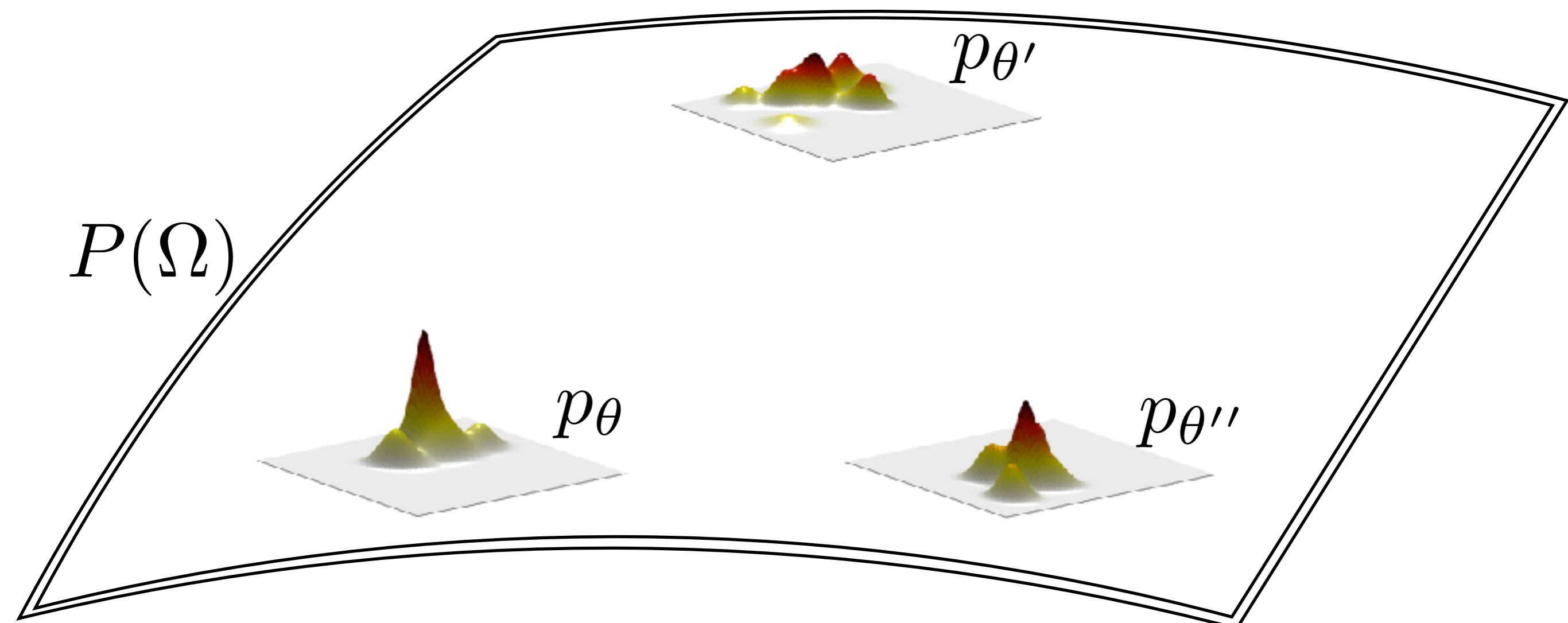
Optimal Transport Geometry

Very different geometry than standard information divergences (KL, Euclidean)



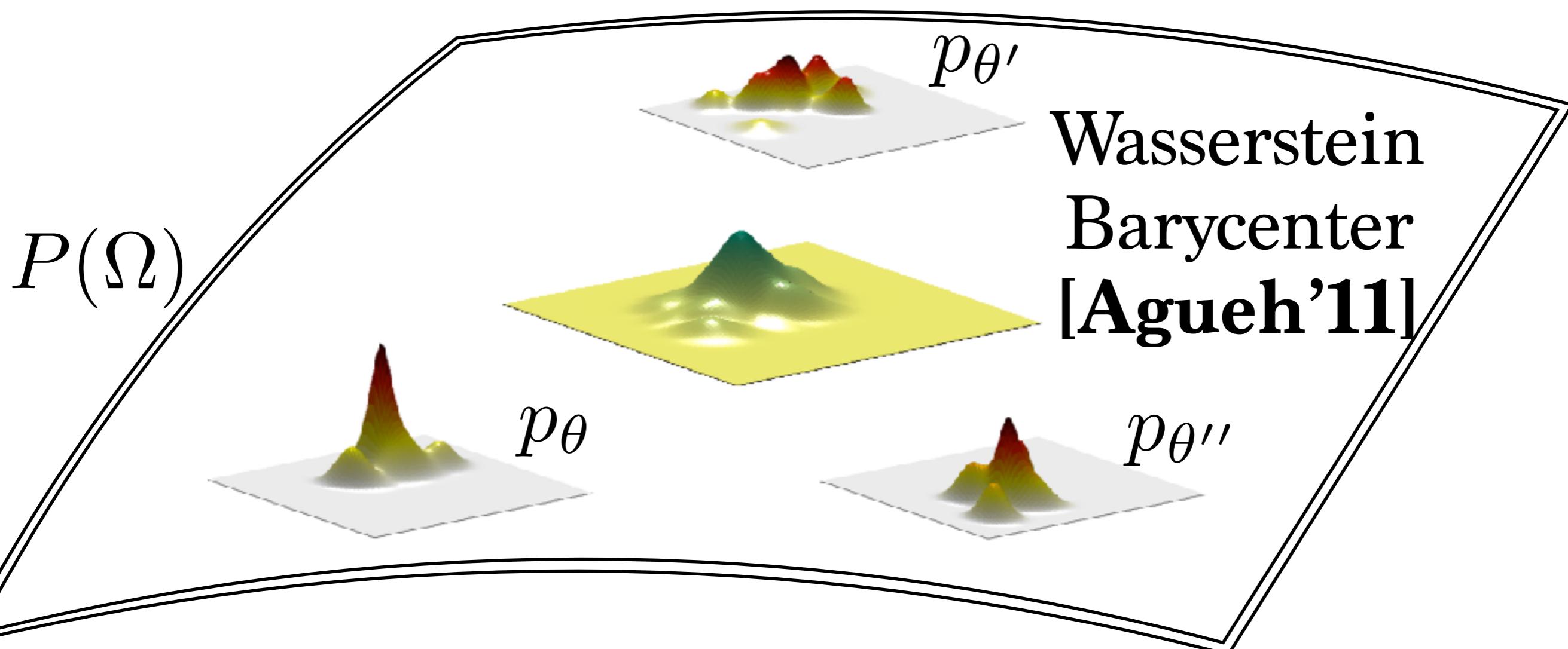
Optimal Transport Geometry

Very different geometry than standard information divergences (KL, Euclidean)

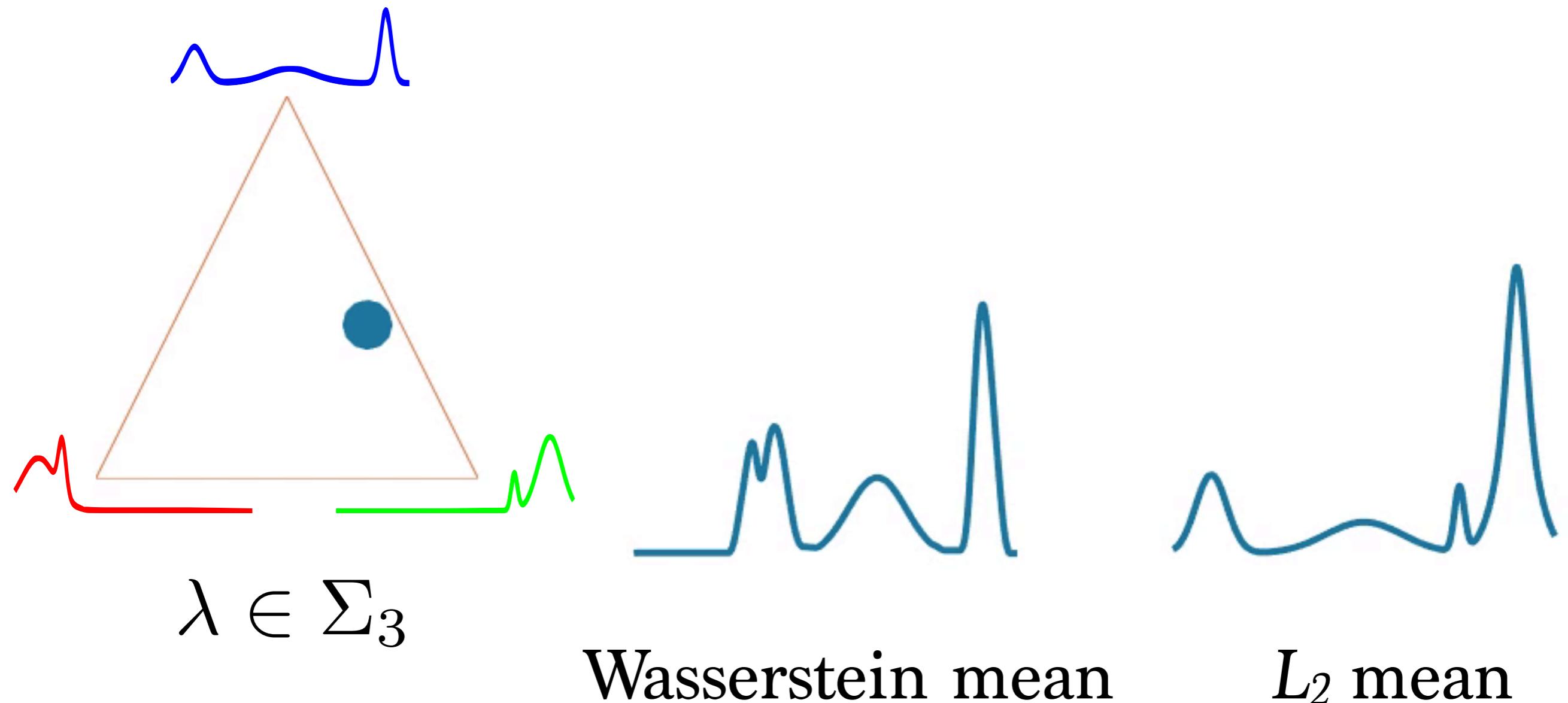


Optimal Transport Geometry

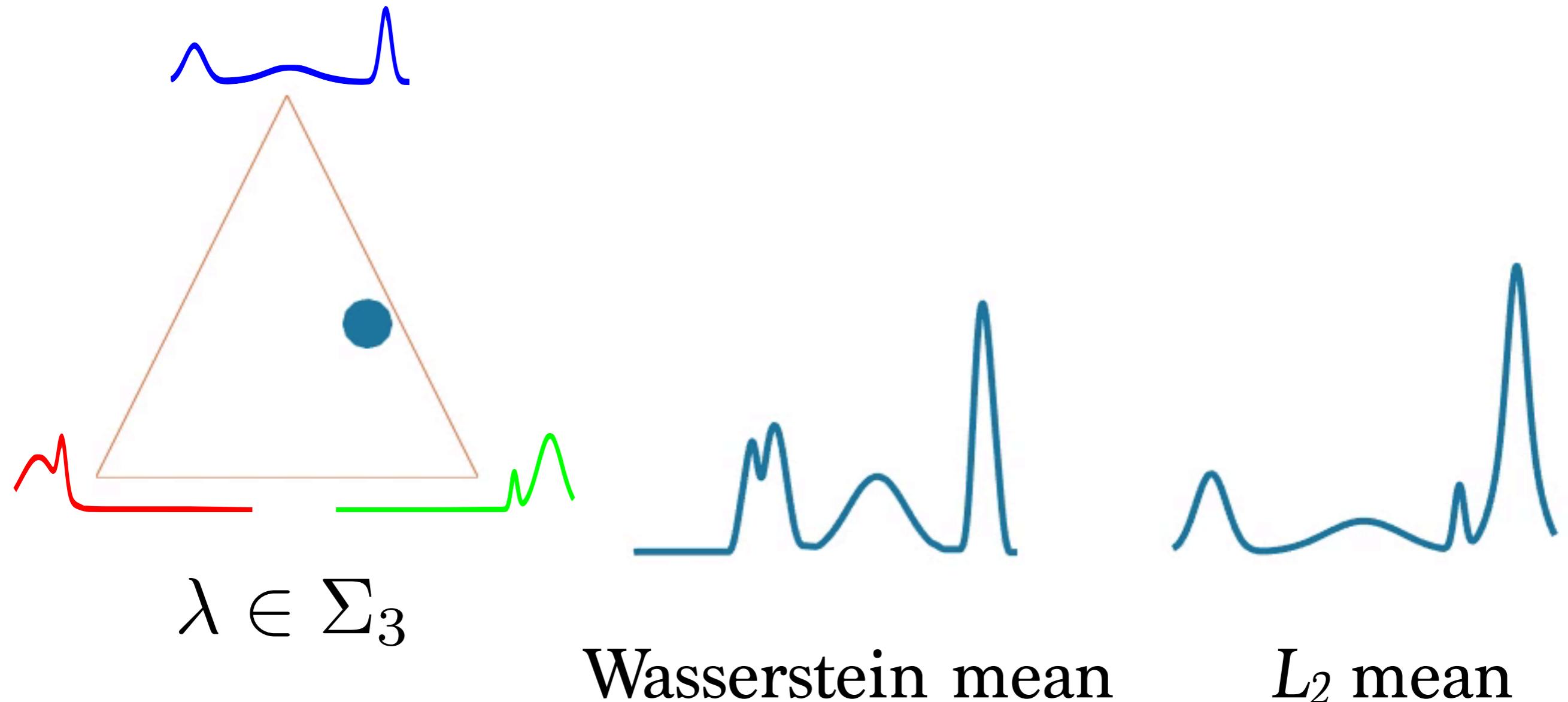
Very different geometry than standard information divergences (KL, Euclidean)



Optimal Transport Geometry



Optimal Transport Geometry



Computational OT

Up to 2010: OT solvers $W_p(\mu, \nu) = ?$

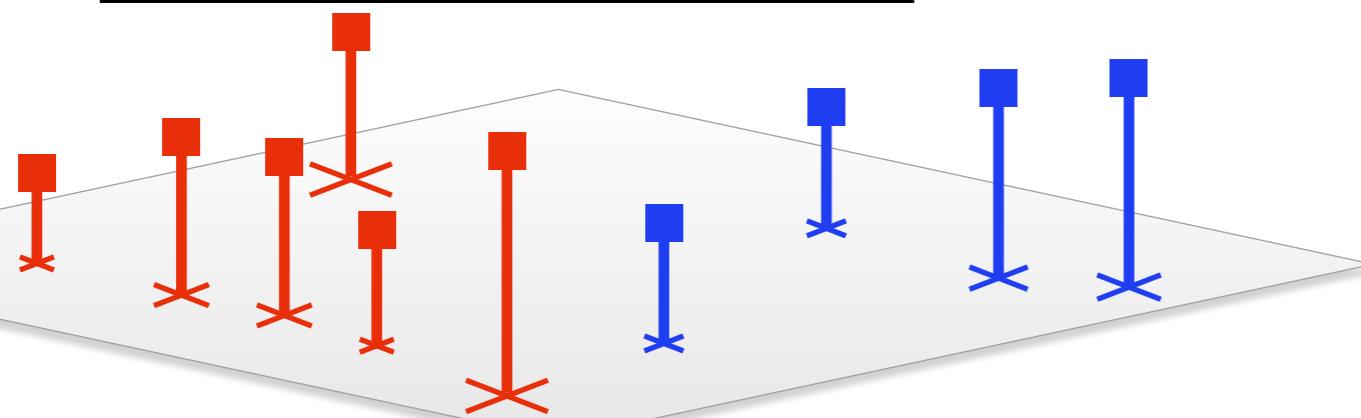
Goal now: use OT as a **loss or fidelity term**

$\underset{\mu \in \mathcal{P}(\Omega)}{\operatorname{argmin}} F(W_p(\mu, \nu_1), W_p(\mu, \nu_2), \dots, \mu) = ?$

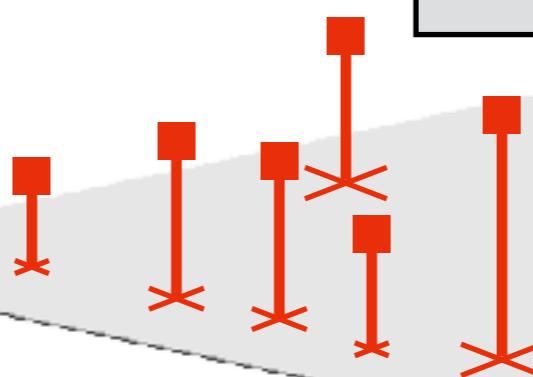
$\nabla_{\mu} W_p(\mu, \nu_1) = ?$

How can we compute OT ?

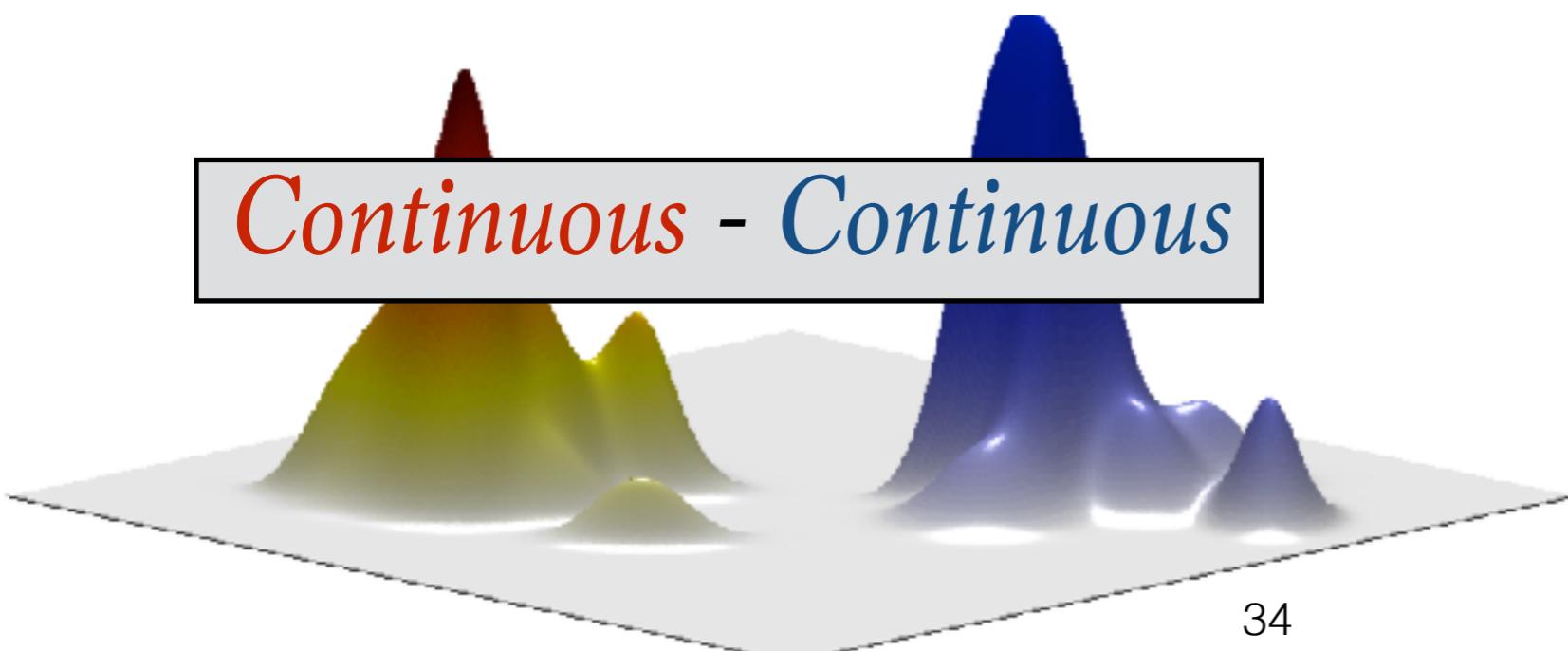
Discrete - Discrete



Discrete - Continuous



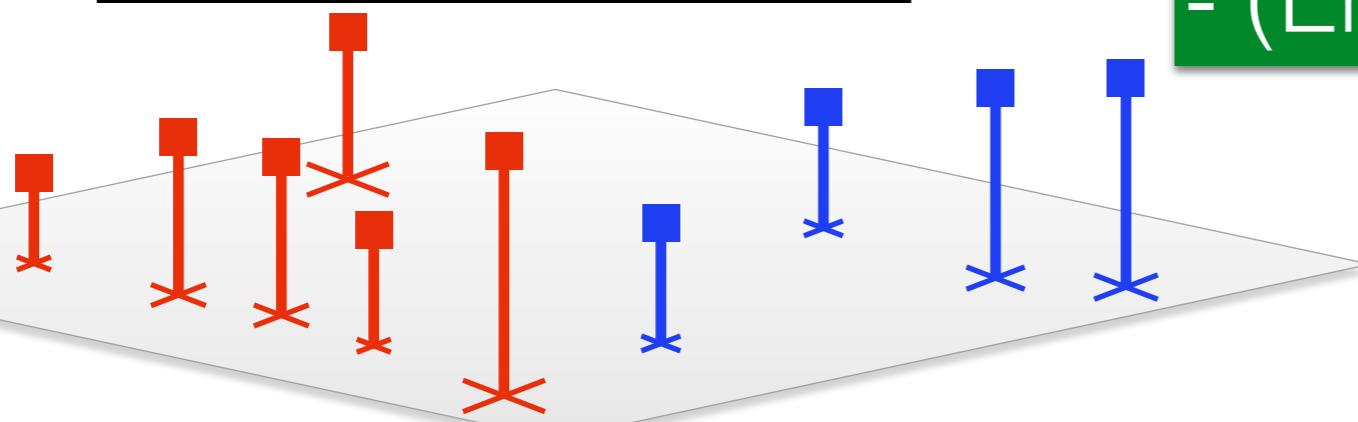
Continuous - Continuous



How can we compute OT ?

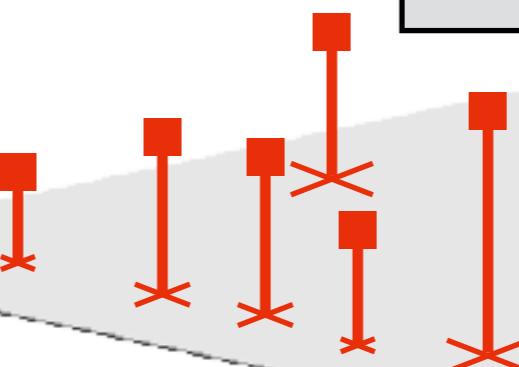
Discrete - Discrete

- Network flow solvers
- (Entropic) regularization



low dim.

Discrete - Continuous



[Mérigot'11][Kitagawa'16][Levy'15]

Continuous - Continuous

PDE's

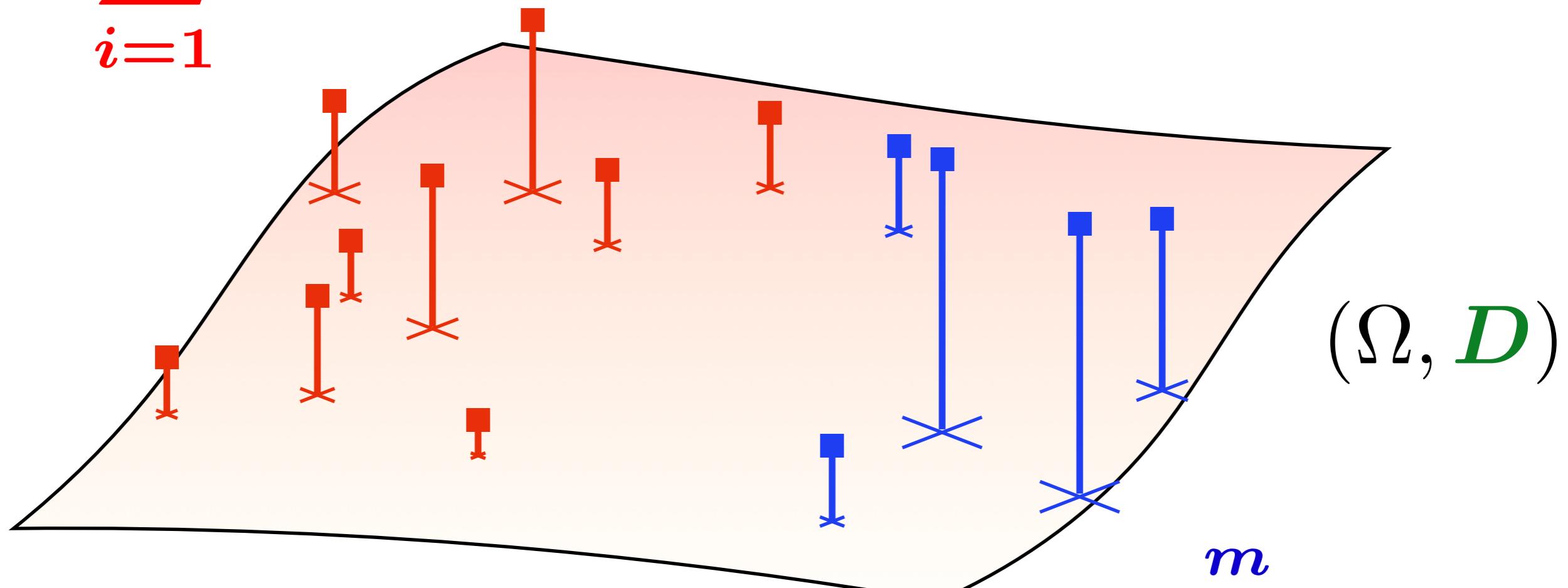
Stochastic
Optimization

[Genevay'16]

[Benamou'98]

OT on Two Discrete Measures

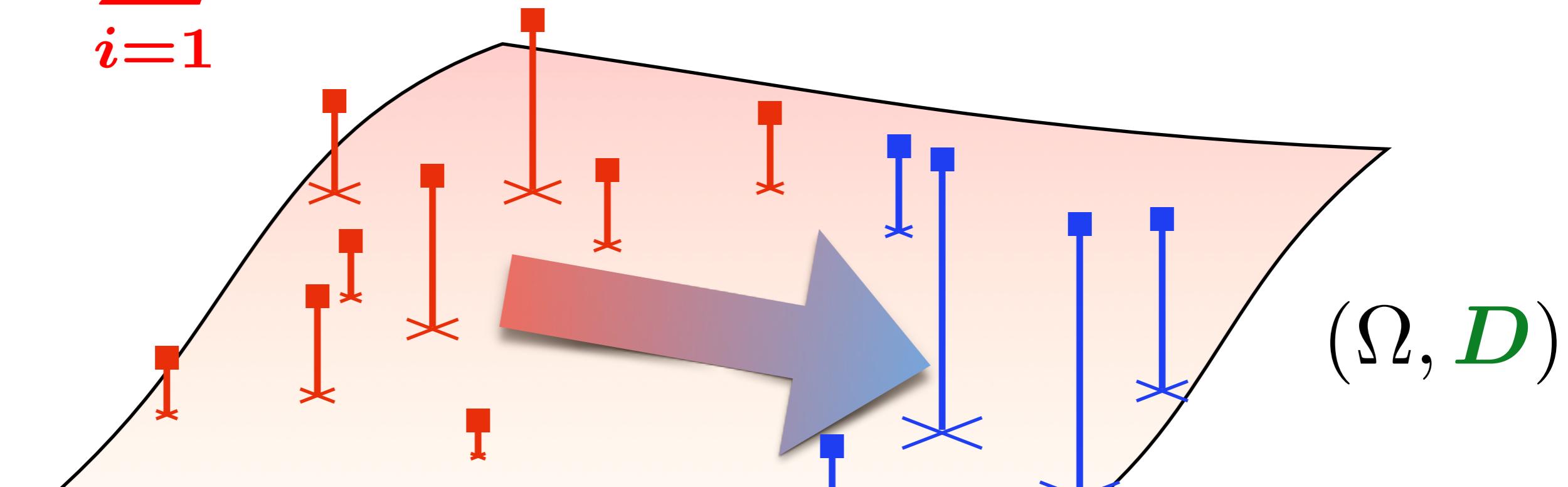
$$\mu = \sum_{i=1}^n a_i \delta_{x_i}$$



$$\nu = \sum_{j=1}^m b_j \delta_{y_j}$$

OT on Two Discrete Measures

$$\mu = \sum_{i=1}^n a_i \delta_{x_i}$$



$$\nu = \sum_{j=1}^m b_j \delta_{y_j}$$

Wasserstein on Discrete Measures

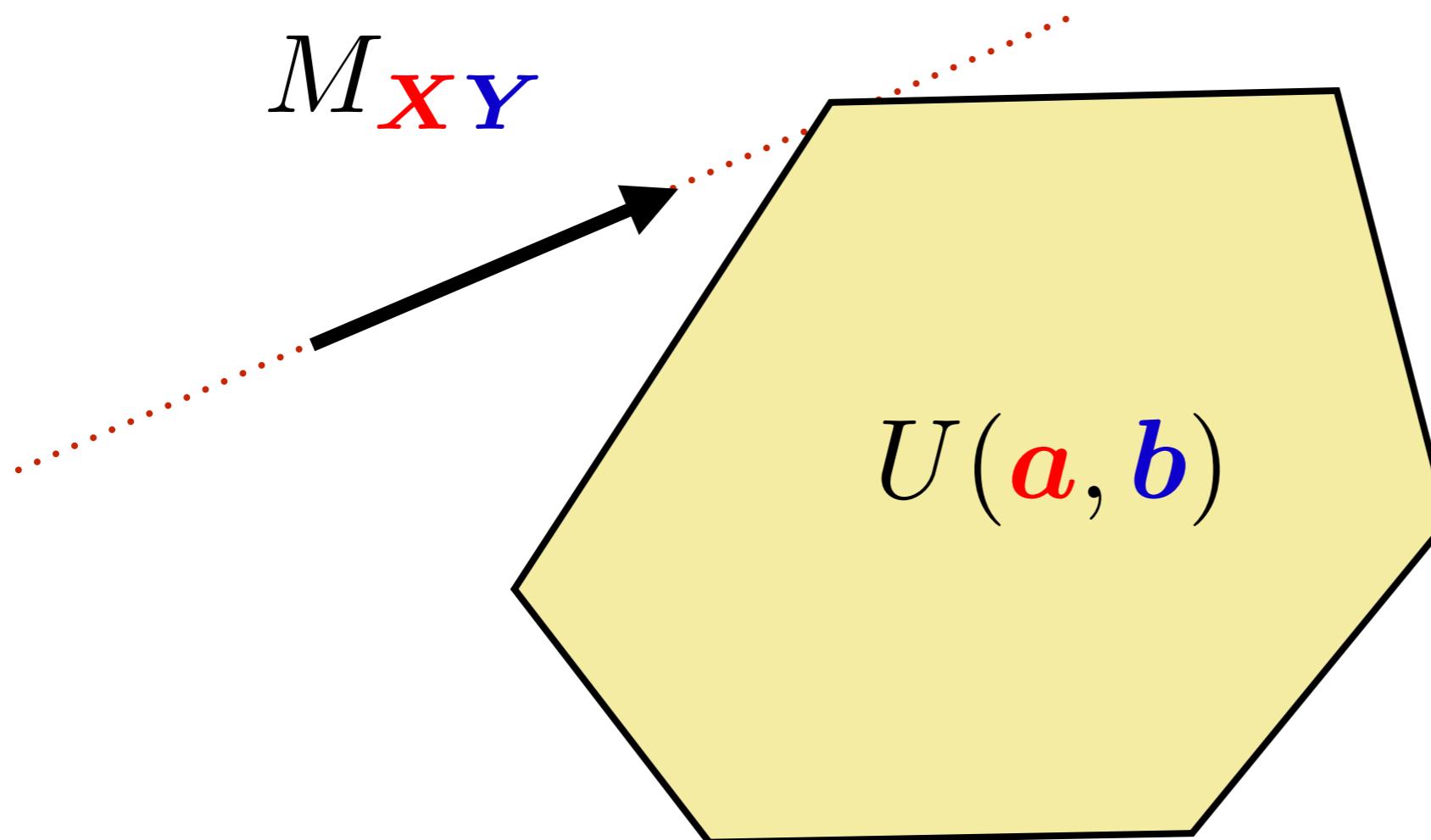
Consider $\mu = \sum_{i=1}^n a_i \delta_{x_i}$ and $\nu = \sum_{j=1}^m b_j \delta_{y_j}$.

$$M_{\mathbf{XY}} \stackrel{\text{def}}{=} [D(\mathbf{x}_i, \mathbf{y}_j)^p]_{ij}$$
$$U(\mathbf{a}, \mathbf{b}) \stackrel{\text{def}}{=} \{ \mathbf{P} \in \mathbb{R}_+^{n \times m} \mid \mathbf{P} \mathbf{1}_m = \mathbf{a}, \mathbf{P}^T \mathbf{1}_n = \mathbf{b} \}$$

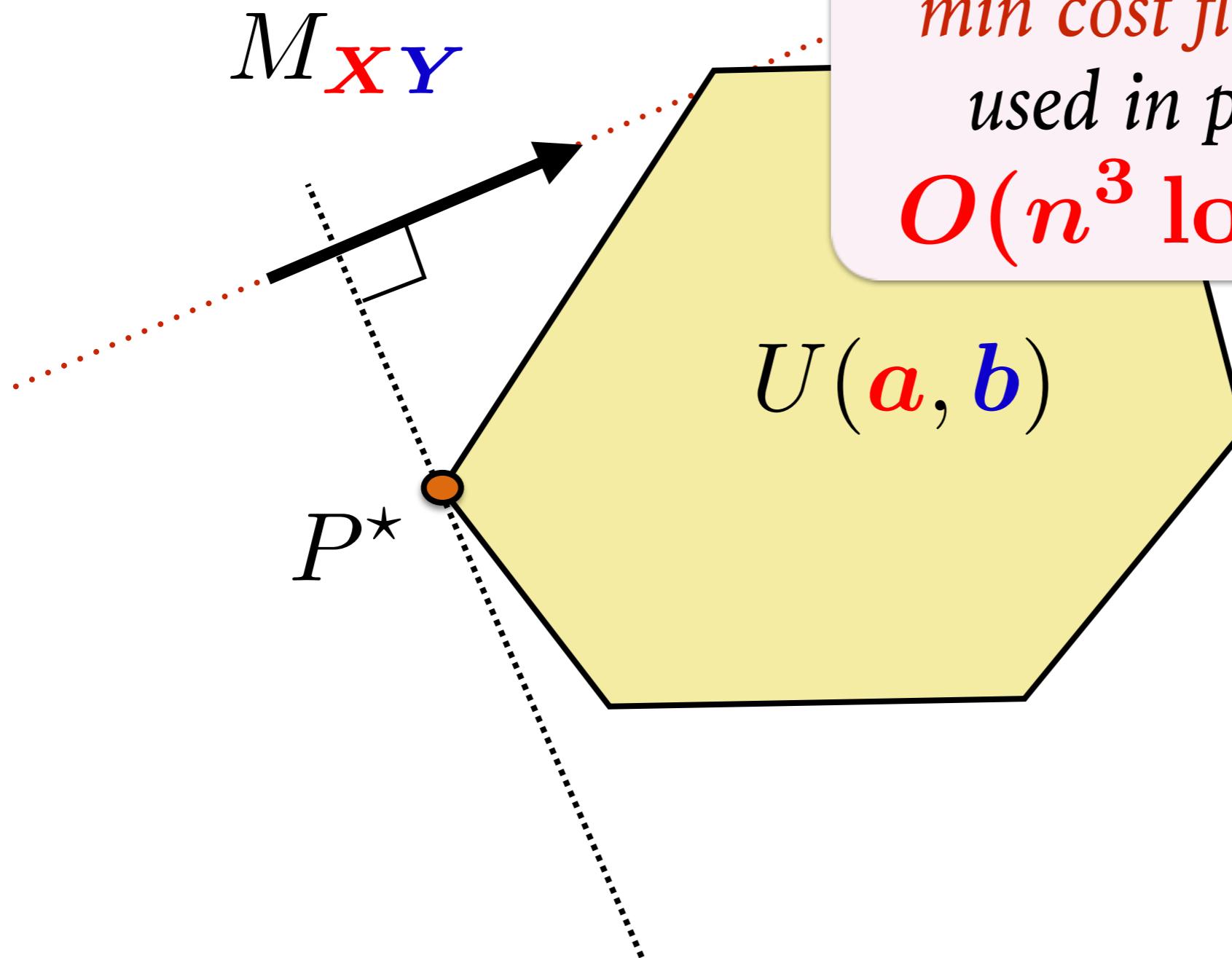
Def. Optimal Transport Problem

$$W_p^p(\mu, \nu) = \min_{\mathbf{P} \in U(\mathbf{a}, \mathbf{b})} \langle \mathbf{P}, M_{\mathbf{XY}} \rangle$$

Solving the OT Problem

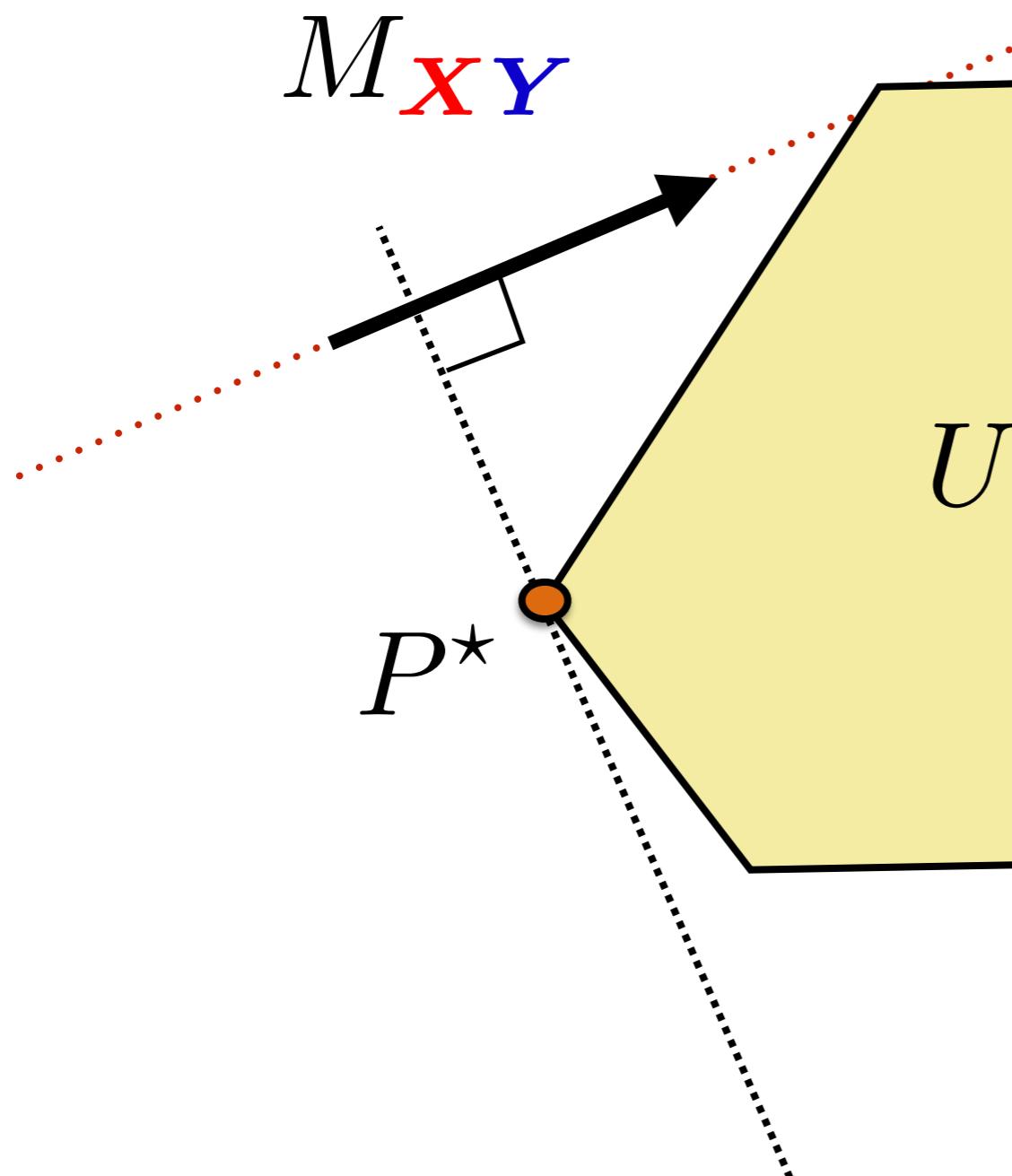


Solving the OT Problem



*min cost flow solver
used in practice.
 $O(n^3 \log(n))$*

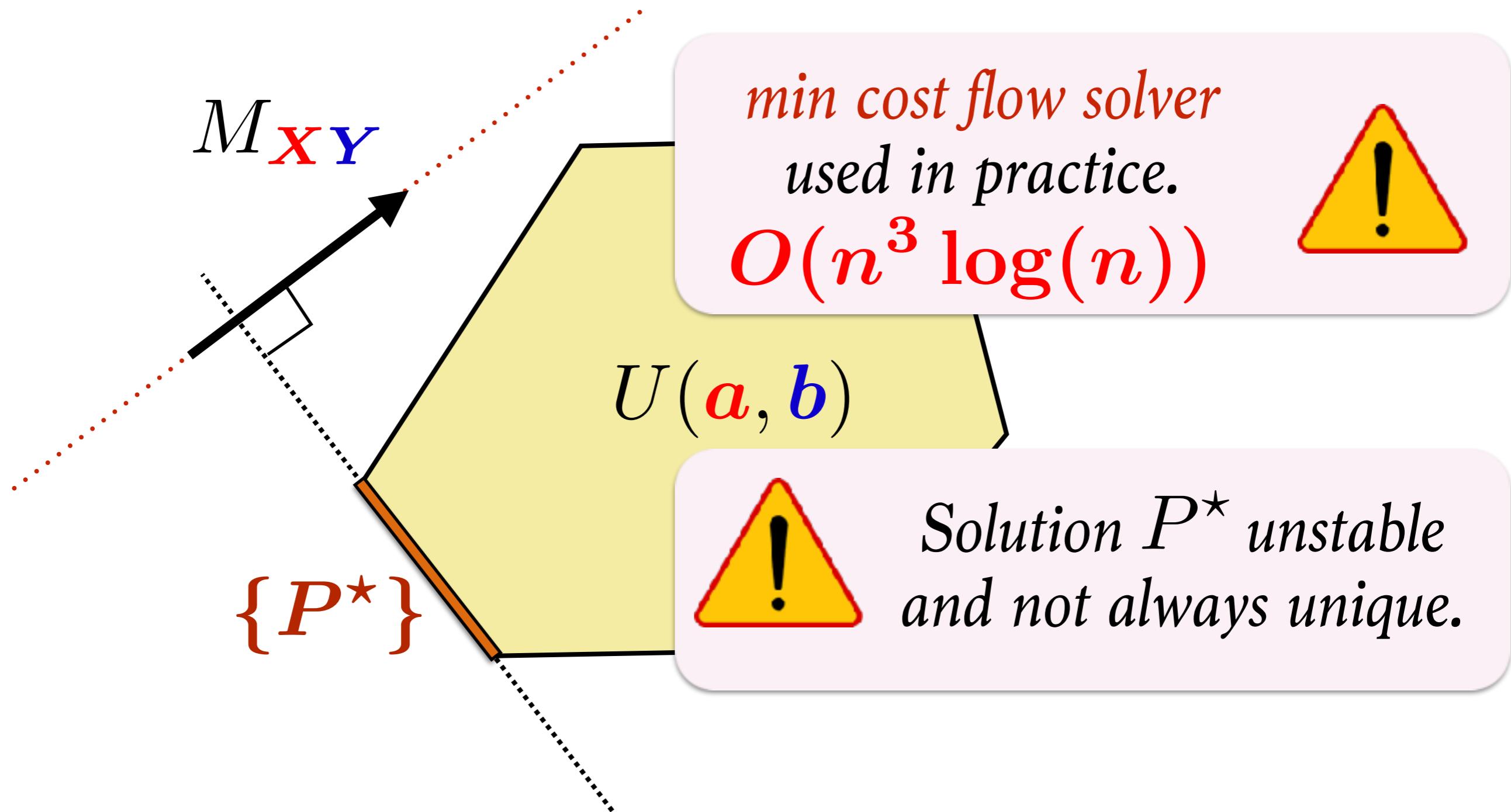
Solving the OT Problem



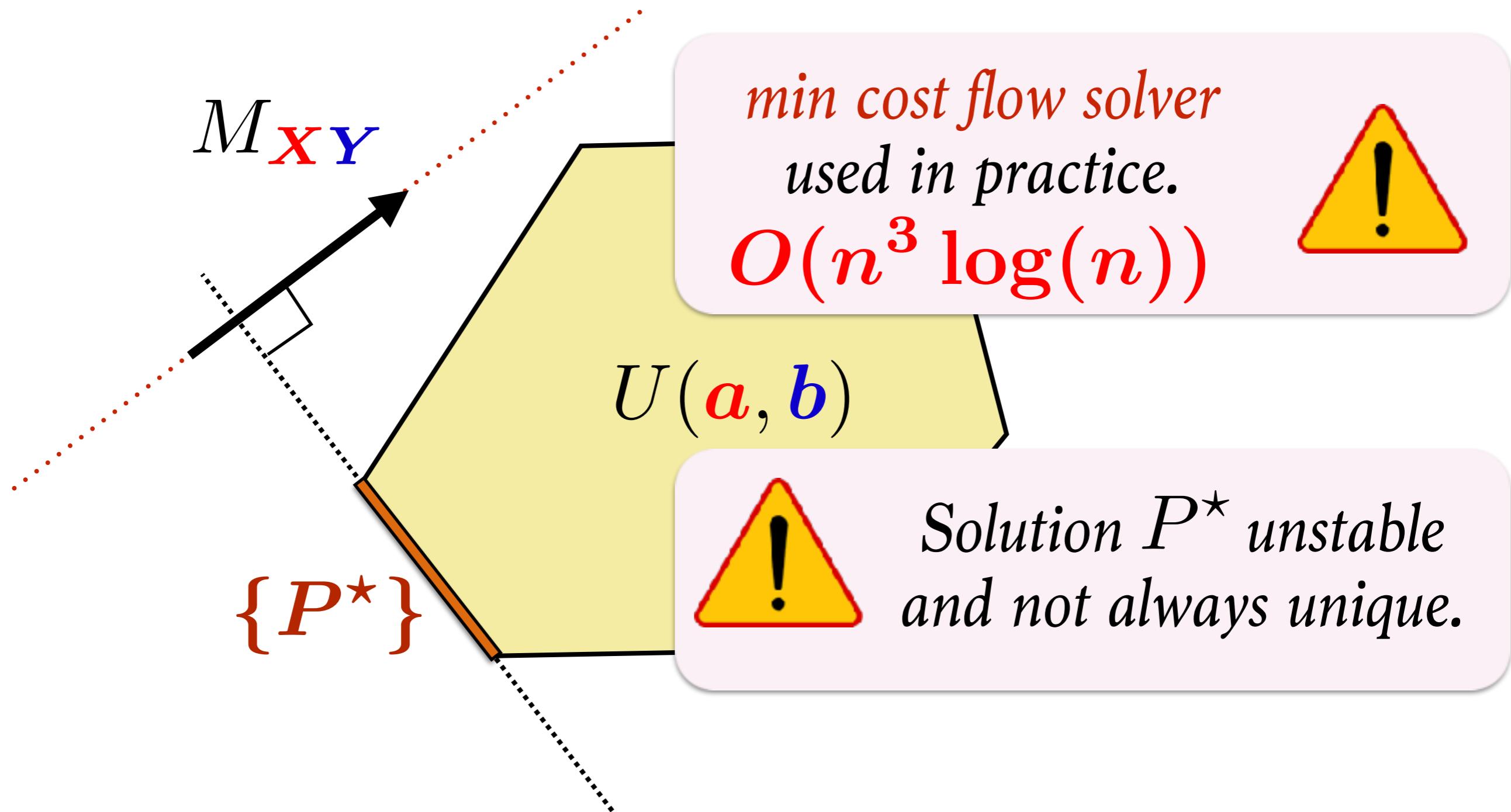
*min cost flow solver
used in practice.
 $O(n^3 \log(n))$*

Solution P^ unstable
and not always unique.*

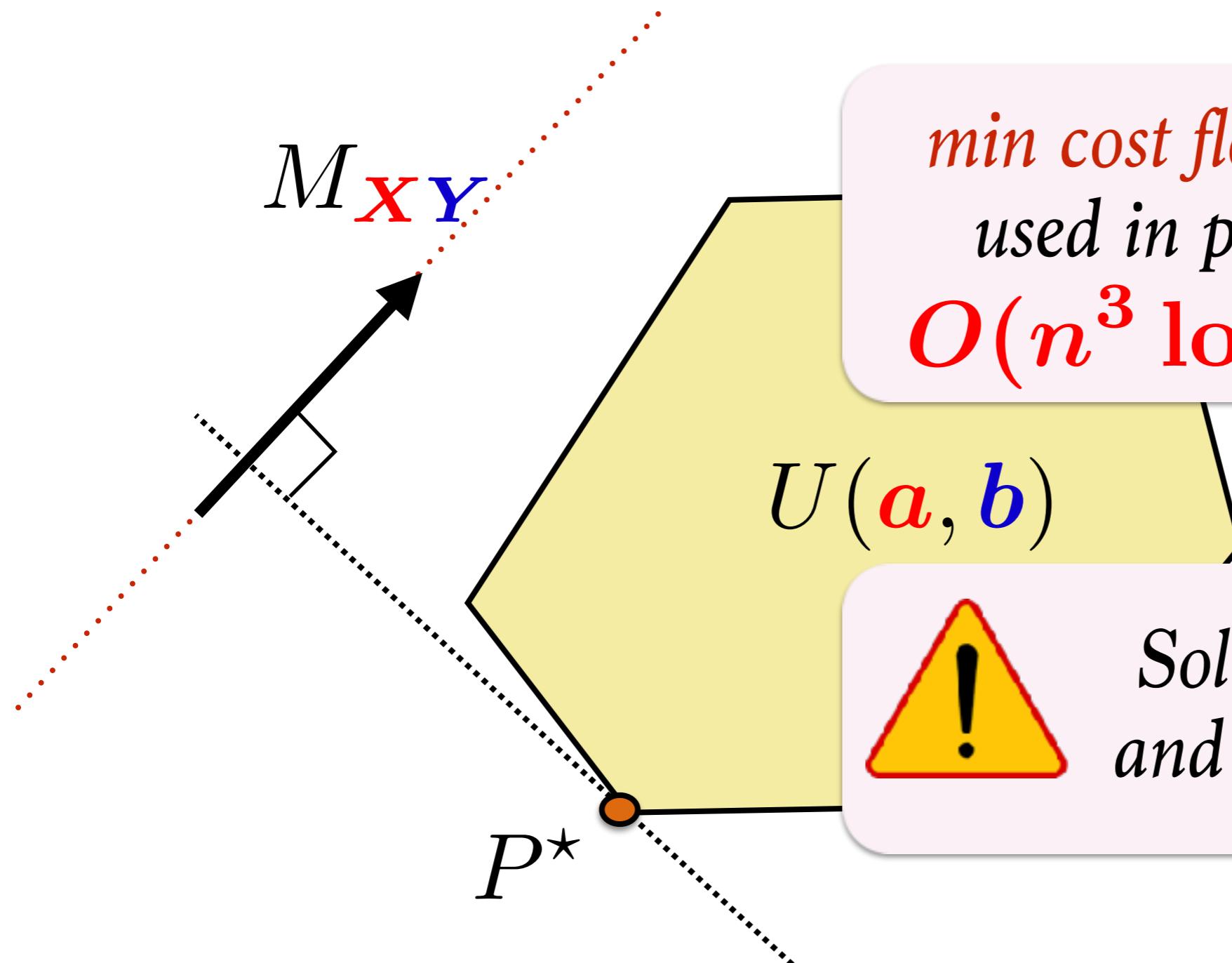
Solving the OT Problem



Solving the OT Problem



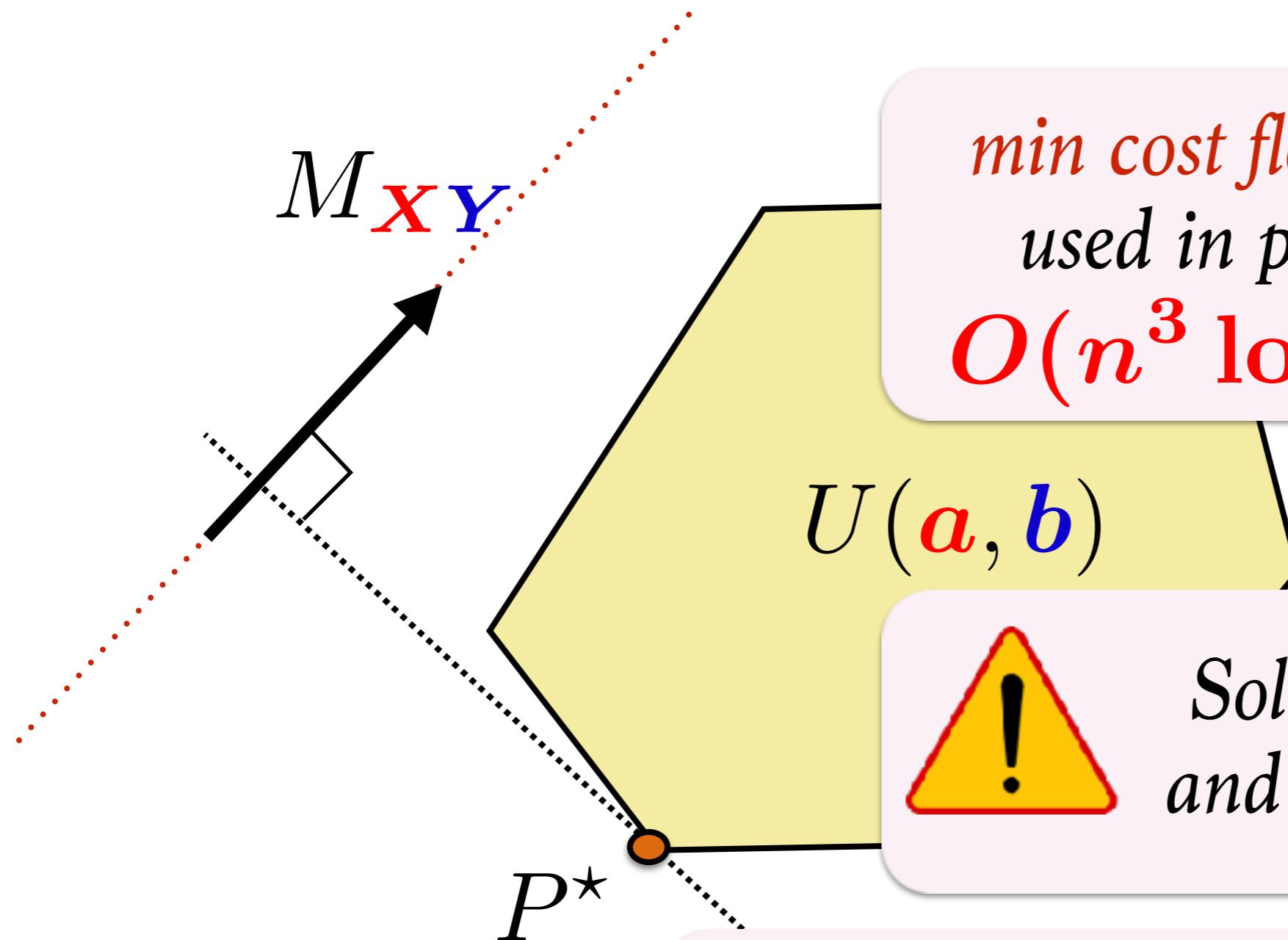
Solving the OT Problem



*min cost flow solver
used in practice.
 $O(n^3 \log(n))$*

Solution P^ unstable
and not always unique.*

Solving the OT Problem



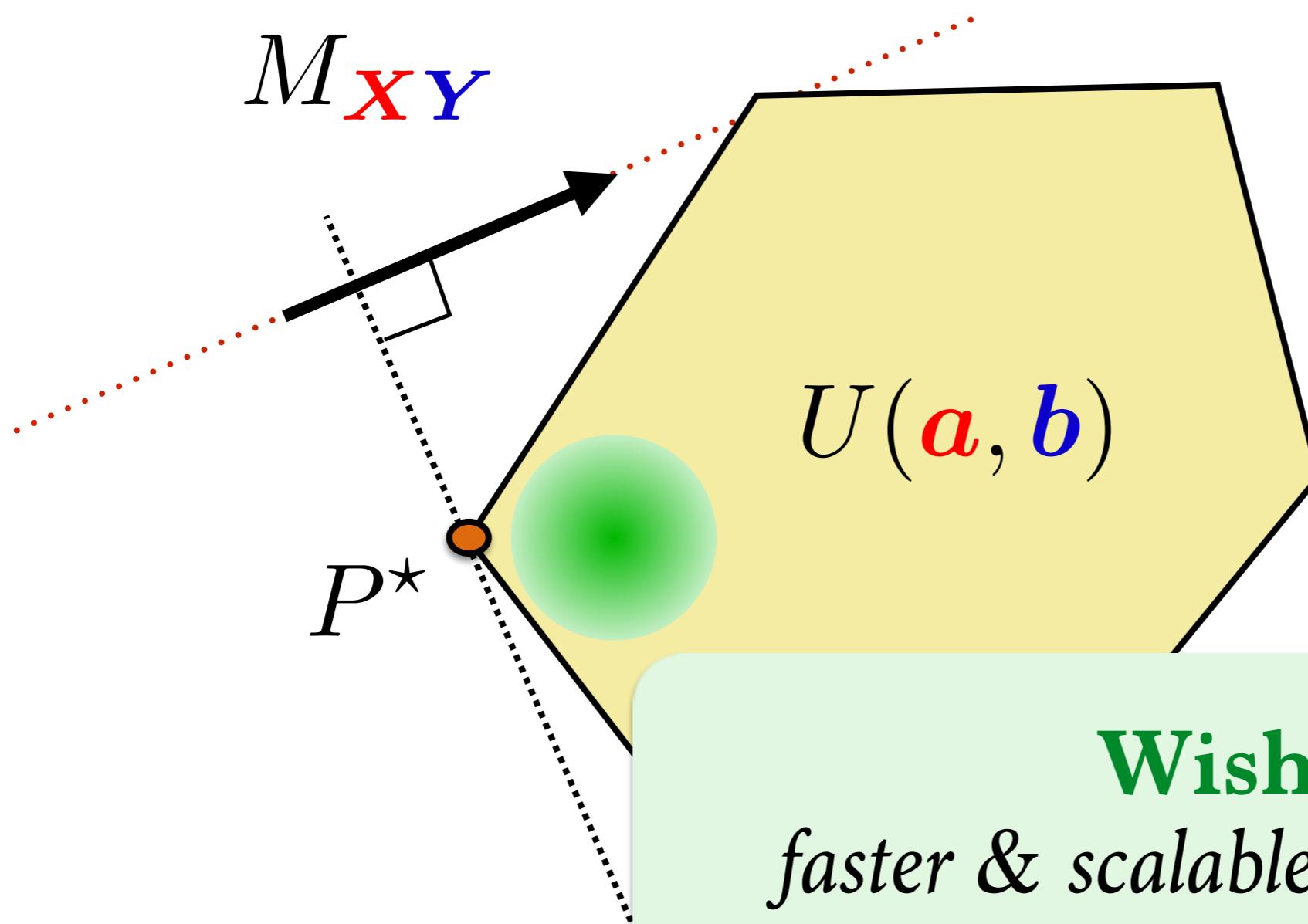
*min cost flow solver
used in practice.
 $O(n^3 \log(n))$*

$U(\mathbf{a}, \mathbf{b})$

Solution P^ unstable
and not always unique.*

$W_p^p(\boldsymbol{\mu}, \boldsymbol{\nu})$ not differentiable.

Solution: Regularization



Wishlist:

*faster & scalable, more stable,
differentiable*

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \geq 0$

$$W_\gamma(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \min_{\boldsymbol{P} \in U(\boldsymbol{a}, \boldsymbol{b})} \langle \boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}} \rangle - \gamma E(\boldsymbol{P})$$

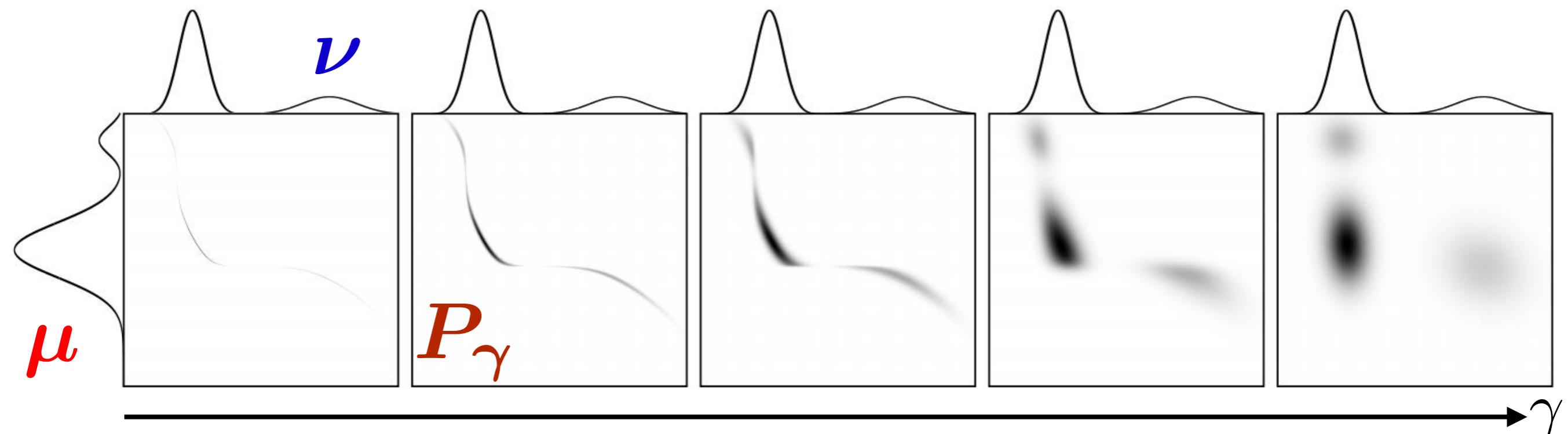
$$E(P) \stackrel{\text{def}}{=} - \sum_{i,j=1}^{nm} P_{ij} (\log P_{ij} - 1)$$

Note: Unique optimal solution because of strong concavity of entropy

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \geq 0$

$$W_\gamma(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \min_{\boldsymbol{P} \in U(\boldsymbol{a}, \boldsymbol{b})} \langle \boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}} \rangle - \gamma E(\boldsymbol{P})$$

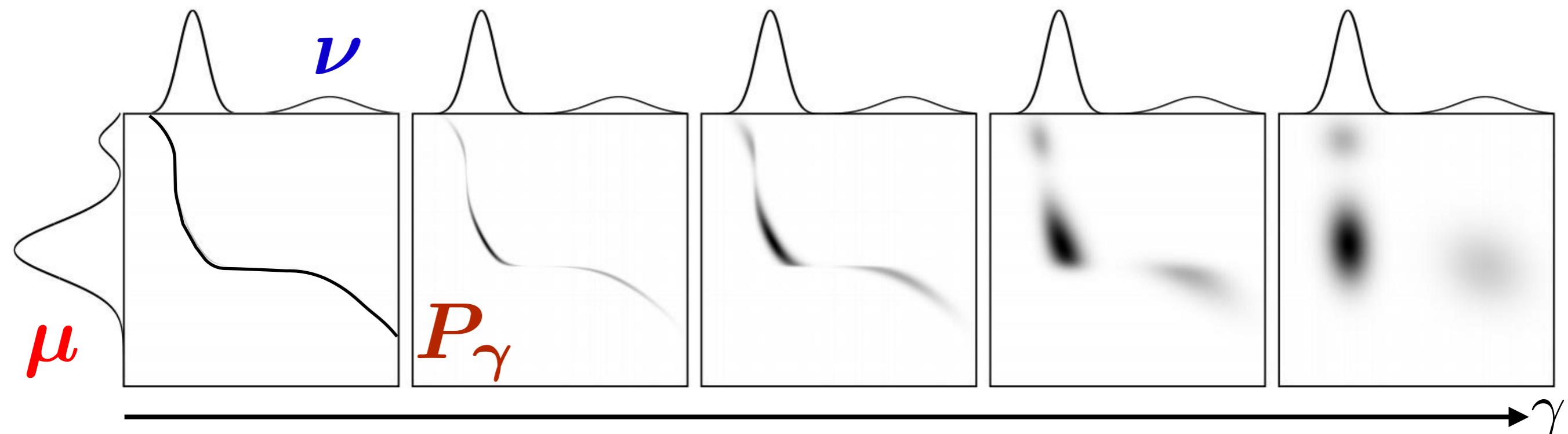


Note: Unique optimal solution because of strong concavity of entropy

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \geq 0$

$$W_\gamma(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \min_{\boldsymbol{P} \in U(\boldsymbol{a}, \boldsymbol{b})} \langle \boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}} \rangle - \gamma E(\boldsymbol{P})$$



Note: Unique optimal solution because of strong concavity of entropy

Fast & Scalable Algorithm

Prop. If $P_\gamma \stackrel{\text{def}}{=} \underset{\mathbf{P} \in U(\mathbf{a}, \mathbf{b})}{\operatorname{argmin}} \langle \mathbf{P}, M_{\mathbf{X}\mathbf{Y}} \rangle - \gamma E(\mathbf{P})$

then $\exists! \mathbf{u} \in \mathbb{R}_+^n, \mathbf{v} \in \mathbb{R}_+^m$, such that

$$P_\gamma = \operatorname{diag}(\mathbf{u}) \mathbf{K} \operatorname{diag}(\mathbf{v}), \quad \mathbf{K} \stackrel{\text{def}}{=} e^{-M_{\mathbf{X}\mathbf{Y}}} / \gamma$$

Fast & Scalable Algorithm

Prop. If $P_\gamma \stackrel{\text{def}}{=} \underset{\mathbf{P} \in U(\mathbf{a}, \mathbf{b})}{\operatorname{argmin}} \langle \mathbf{P}, M_{\mathbf{X}\mathbf{Y}} \rangle - \gamma E(\mathbf{P})$

then $\exists! \mathbf{u} \in \mathbb{R}_+^n, \mathbf{v} \in \mathbb{R}_+^m$, such that

$$P_\gamma = \operatorname{diag}(\mathbf{u}) \mathbf{K} \operatorname{diag}(\mathbf{v}), \quad \mathbf{K} \stackrel{\text{def}}{=} e^{-M_{\mathbf{X}\mathbf{Y}}/\gamma}$$

$$L(P, \alpha, \beta) = \sum_{ij} P_{ij} M_{ij} + \gamma P_{ij} (\log P_{ij} - 1) + \alpha^T (P \mathbf{1} - \mathbf{a}) + \beta^T (P^T \mathbf{1} - \mathbf{b})$$

$$\frac{\partial L}{\partial P_{ij}} = M_{ij} + \gamma \log P_{ij} + \alpha_i + \beta_j$$

$$(\frac{\partial L}{\partial P_{ij}} = 0) \Rightarrow P_{ij} = e^{\frac{\alpha_i}{\gamma}} e^{-\frac{M_{ij}}{\gamma}} e^{\frac{\beta_j}{\gamma}} = \mathbf{u}_i \mathbf{K}_{ij} \mathbf{v}_j$$

Fast & Scalable Algorithm

Prop. If $P_\gamma \stackrel{\text{def}}{=} \underset{\mathbf{P} \in U(\mathbf{a}, \mathbf{b})}{\operatorname{argmin}} \langle \mathbf{P}, M_{\mathbf{X}\mathbf{Y}} \rangle - \gamma E(\mathbf{P})$

then $\exists! \mathbf{u} \in \mathbb{R}_+^n, \mathbf{v} \in \mathbb{R}_+^m$, such that

$$P_\gamma = \operatorname{diag}(\mathbf{u}) \mathbf{K} \operatorname{diag}(\mathbf{v}), \quad \mathbf{K} \stackrel{\text{def}}{=} e^{-M_{\mathbf{X}\mathbf{Y}}}/\gamma$$

$$P_\gamma \in U(\mathbf{a}, \mathbf{b}) \Leftrightarrow \begin{cases} \operatorname{diag}(\mathbf{u}) \mathbf{K} \operatorname{diag}(\mathbf{v}) \mathbf{1}_m = \mathbf{a} \\ \operatorname{diag}(\mathbf{v}) \mathbf{K}^T \operatorname{diag}(\mathbf{u}) \mathbf{1}_n = \mathbf{b} \end{cases}$$

Fast & Scalable Algorithm

Prop. If $P_\gamma \stackrel{\text{def}}{=} \underset{\mathbf{P} \in U(\mathbf{a}, \mathbf{b})}{\operatorname{argmin}} \langle \mathbf{P}, M_{\mathbf{XY}} \rangle - \gamma E(\mathbf{P})$

then $\exists! \mathbf{u} \in \mathbb{R}_+^n, \mathbf{v} \in \mathbb{R}_+^m$, such that

$$P_\gamma = \operatorname{diag}(\mathbf{u}) \mathbf{K} \operatorname{diag}(\mathbf{v}), \quad \mathbf{K} \stackrel{\text{def}}{=} e^{-M_{\mathbf{XY}}}/\gamma$$

$$P_\gamma \in U(\mathbf{a}, \mathbf{b}) \Leftrightarrow \begin{cases} \operatorname{diag}(\mathbf{u}) \mathbf{K} \operatorname{diag}(\mathbf{v}) \mathbf{1}_m = \mathbf{a} \\ \operatorname{diag}(\mathbf{v}) \underbrace{\mathbf{K}^T \operatorname{diag}(\mathbf{u}) \mathbf{1}_n}_\mathbf{u} = \mathbf{b} \end{cases}$$

Fast & Scalable Algorithm

Prop. If $P_\gamma \stackrel{\text{def}}{=} \underset{\mathbf{P} \in U(\mathbf{a}, \mathbf{b})}{\operatorname{argmin}} \langle \mathbf{P}, M_{\mathbf{XY}} \rangle - \gamma E(\mathbf{P})$

then $\exists! \mathbf{u} \in \mathbb{R}_+^n, \mathbf{v} \in \mathbb{R}_+^m$, such that

$$P_\gamma = \operatorname{diag}(\mathbf{u}) \mathbf{K} \operatorname{diag}(\mathbf{v}), \quad \mathbf{K} \stackrel{\text{def}}{=} e^{-M_{\mathbf{XY}}}/\gamma$$

$$P_\gamma \in U(\mathbf{a}, \mathbf{b}) \Leftrightarrow \begin{cases} \operatorname{diag}(\mathbf{u}) \mathbf{K} \underbrace{\operatorname{diag}(\mathbf{v}) \mathbf{1}_m}_{\mathbf{v}} = \mathbf{a} \\ \operatorname{diag}(\mathbf{v}) \mathbf{K}^T \underbrace{\operatorname{diag}(\mathbf{u}) \mathbf{1}_n}_{\mathbf{u}} = \mathbf{b} \end{cases}$$

Fast & Scalable Algorithm

Prop. If $P_\gamma \stackrel{\text{def}}{=} \underset{\mathbf{P} \in U(\mathbf{a}, \mathbf{b})}{\operatorname{argmin}} \langle \mathbf{P}, M_{\mathbf{X}\mathbf{Y}} \rangle - \gamma E(\mathbf{P})$

then $\exists! \mathbf{u} \in \mathbb{R}_+^n, \mathbf{v} \in \mathbb{R}_+^m$, such that

$$P_\gamma = \operatorname{diag}(\mathbf{u}) \mathbf{K} \operatorname{diag}(\mathbf{v}), \quad \mathbf{K} \stackrel{\text{def}}{=} e^{-M_{\mathbf{X}\mathbf{Y}}}/\gamma$$

$$P_\gamma \in U(\mathbf{a}, \mathbf{b}) \Leftrightarrow \begin{cases} \operatorname{diag}(\mathbf{u}) \mathbf{K} \mathbf{v} \\ \operatorname{diag}(\mathbf{v}) \mathbf{K}^T \mathbf{u} \end{cases} \begin{matrix} = \mathbf{a} \\ = \mathbf{b} \end{matrix}$$

Fast & Scalable Algorithm

Prop. If $P_\gamma \stackrel{\text{def}}{=} \underset{\mathbf{P} \in U(\mathbf{a}, \mathbf{b})}{\operatorname{argmin}} \langle \mathbf{P}, M_{\mathbf{X}\mathbf{Y}} \rangle - \gamma E(\mathbf{P})$

then $\exists! \mathbf{u} \in \mathbb{R}_+^n, \mathbf{v} \in \mathbb{R}_+^m$, such that

$$P_\gamma = \operatorname{diag}(\mathbf{u}) \mathbf{K} \operatorname{diag}(\mathbf{v}), \quad \mathbf{K} \stackrel{\text{def}}{=} e^{-M_{\mathbf{X}\mathbf{Y}}}/\gamma$$

$$P_\gamma \in U(\mathbf{a}, \mathbf{b}) \Leftrightarrow \begin{cases} \mathbf{u} \odot \mathbf{K} \mathbf{v} = \mathbf{a} \\ \mathbf{v} \odot \mathbf{K}^T \mathbf{u} = \mathbf{b} \end{cases}$$

Fast & Scalable Algorithm

Prop. If $P_\gamma \stackrel{\text{def}}{=} \underset{\mathbf{P} \in U(\mathbf{a}, \mathbf{b})}{\operatorname{argmin}} \langle \mathbf{P}, M_{\mathbf{X}\mathbf{Y}} \rangle - \gamma E(\mathbf{P})$

then $\exists! \mathbf{u} \in \mathbb{R}_+^n, \mathbf{v} \in \mathbb{R}_+^m$, such that

$$P_\gamma = \operatorname{diag}(\mathbf{u}) \mathbf{K} \operatorname{diag}(\mathbf{v}), \quad \mathbf{K} \stackrel{\text{def}}{=} e^{-M_{\mathbf{X}\mathbf{Y}}} / \gamma$$

$$P_\gamma \in U(\mathbf{a}, \mathbf{b}) \Leftrightarrow \begin{cases} \mathbf{u} = \mathbf{a} / \mathbf{K} \mathbf{v} \\ \mathbf{v} = \mathbf{b} / \mathbf{K}^T \mathbf{u} \end{cases}$$

Fast & Scalable Algorithm

Sinkhorn's Algorithm : Repeat

1. $\mathbf{u} = \mathbf{a}/K\mathbf{v}$
2. $\mathbf{v} = \mathbf{b}/K^T \mathbf{u}$

Fast & Scalable Algorithm

Sinkhorn's Algorithm : Repeat

1. $\mathbf{u} = \mathbf{a}/K\mathbf{v}$
2. $\mathbf{v} = \mathbf{b}/K^T \mathbf{u}$

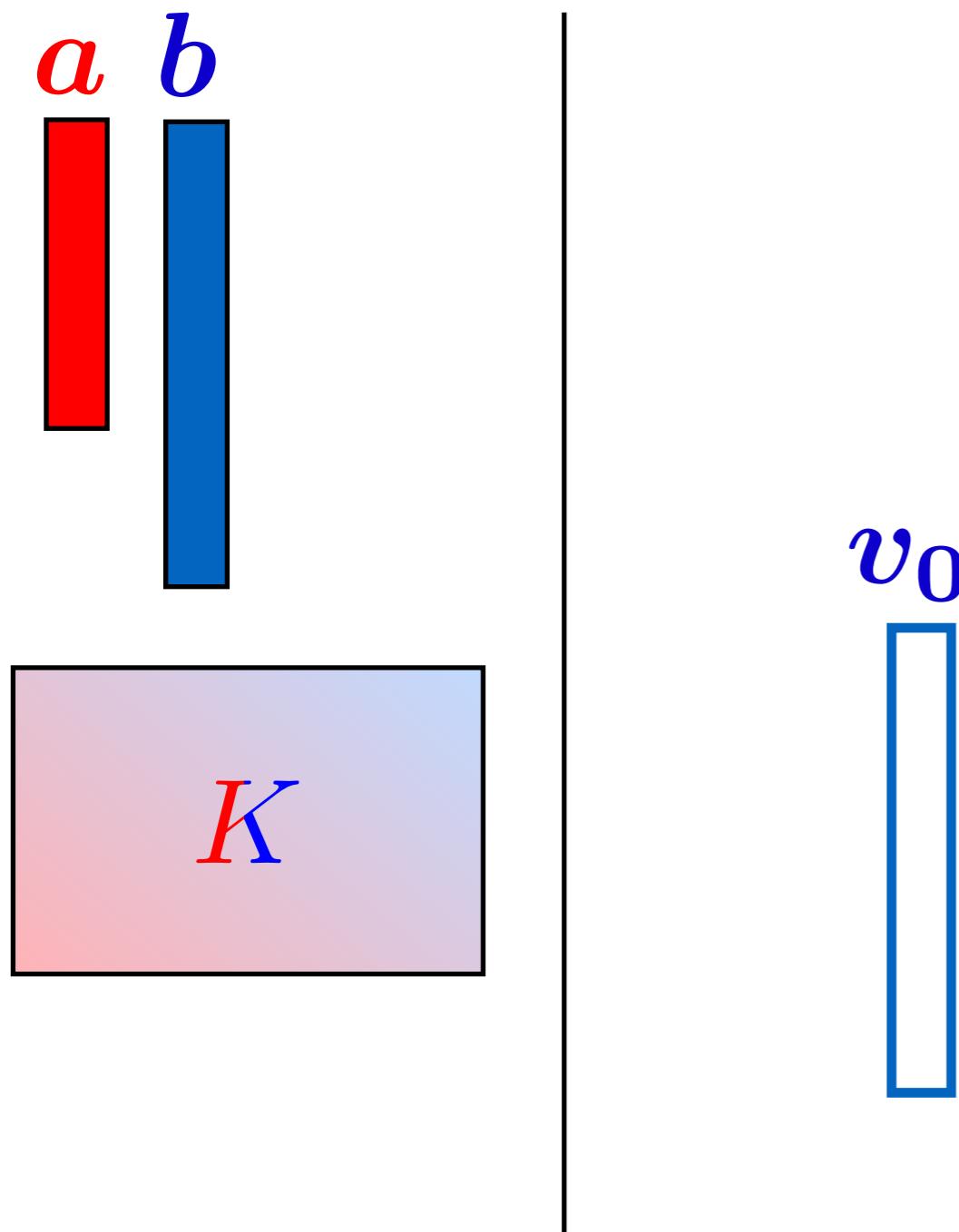
- [Sinkhorn'64] proved convergence for the first time.
- [Lorenz'89] linear convergence, see [Altschuler'17]
- $O(nm)$ complexity, GPGPU parallel [Cuturi'13].
- $O(n \log n)$ on gridded spaces using convolutions.

[Solomon'15]

Fast & Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (\mathbf{u}, \mathbf{v})

$$\mathbf{u} \leftarrow \mathbf{a}/K\mathbf{v}, \quad \mathbf{v} \leftarrow \mathbf{b}/K^T \mathbf{u}$$



Fast & Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (\mathbf{u}, \mathbf{v})

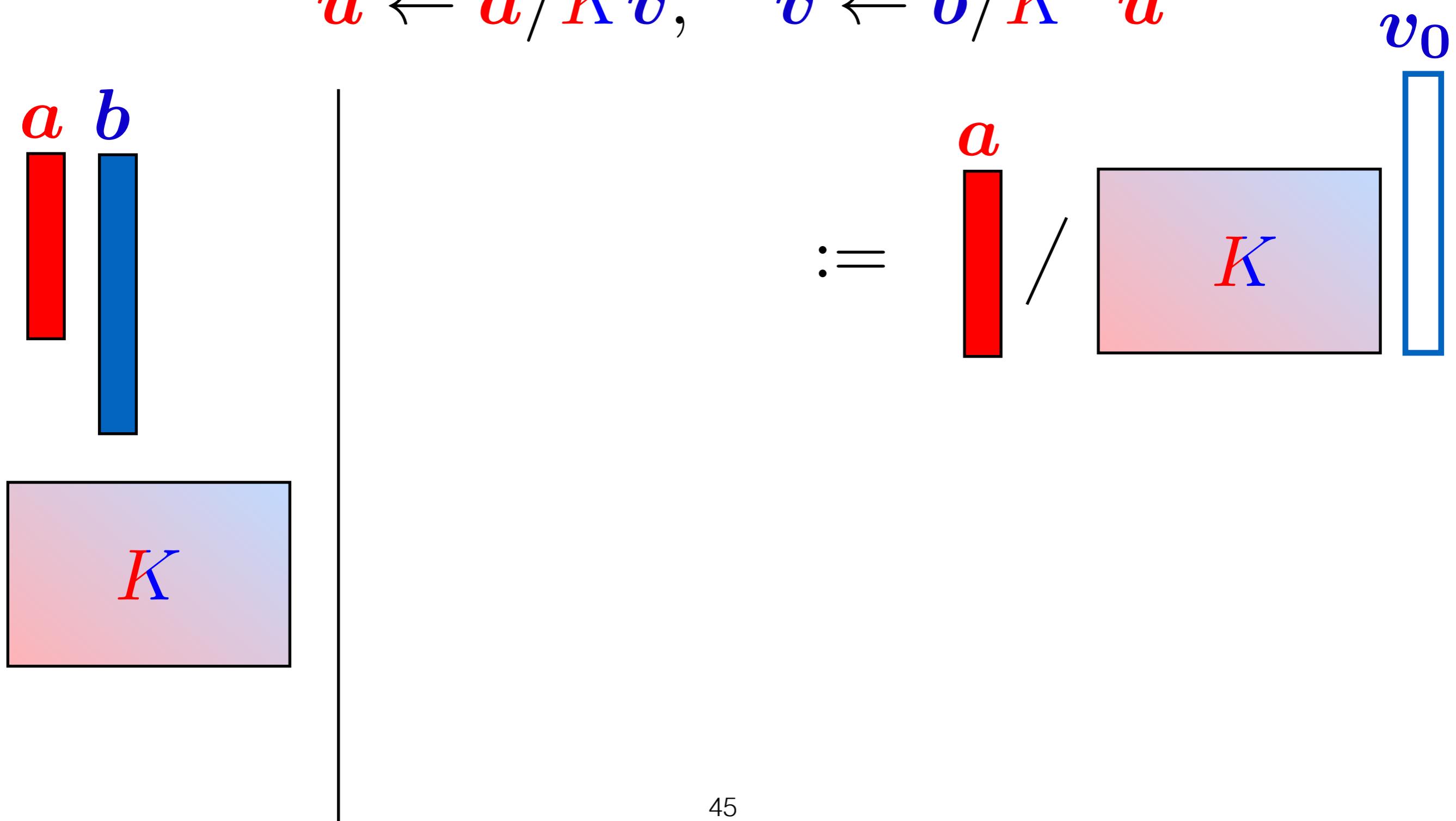
$$\mathbf{u} \leftarrow \mathbf{a}/K\mathbf{v}, \quad \mathbf{v} \leftarrow \mathbf{b}/K^T \mathbf{u}$$



Fast & Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (\mathbf{u}, \mathbf{v})

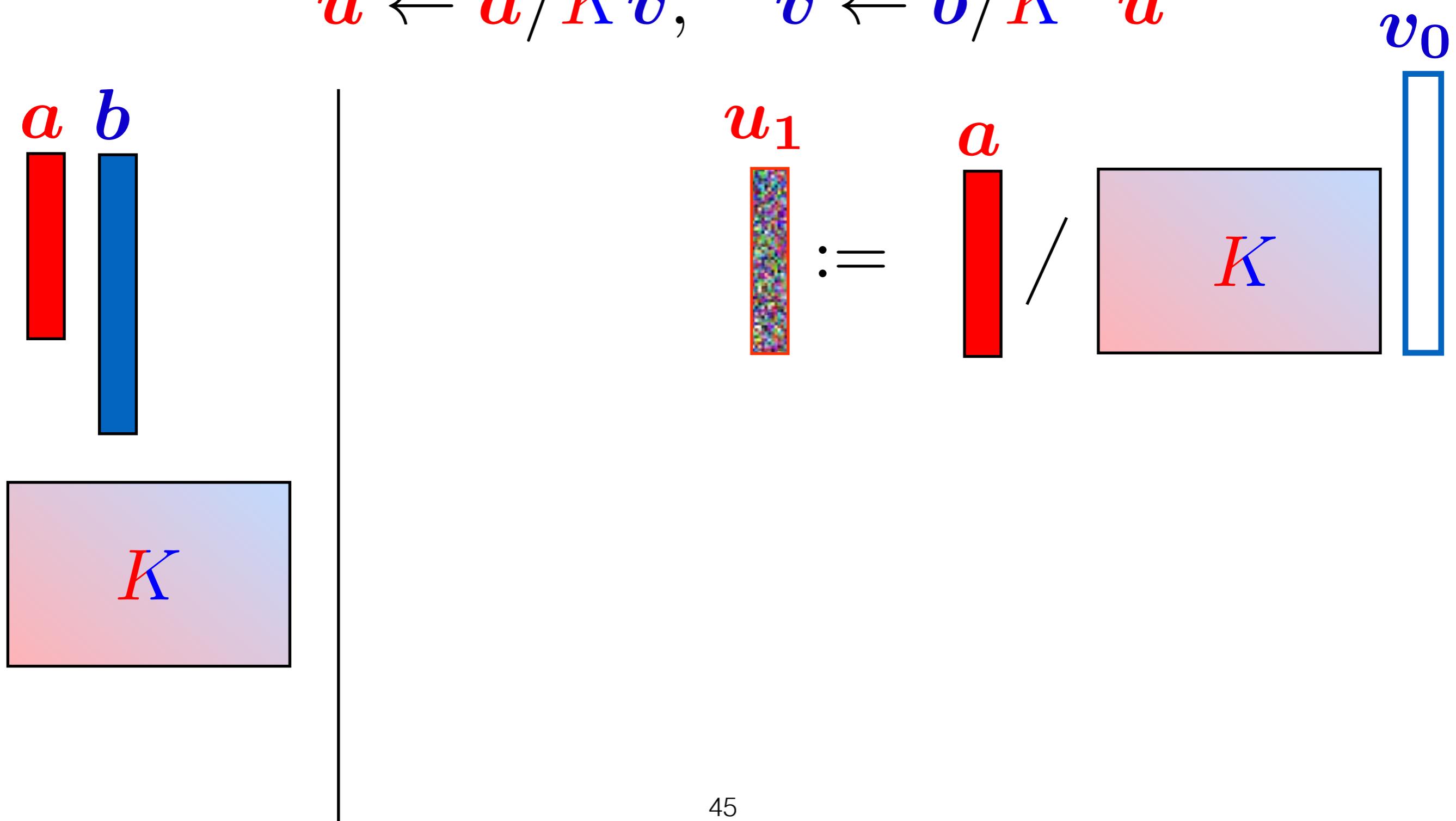
$$\mathbf{u} \leftarrow \mathbf{a}/K\mathbf{v}, \quad \mathbf{v} \leftarrow \mathbf{b}/K^T \mathbf{u}$$



Fast & Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (\mathbf{u}, \mathbf{v})

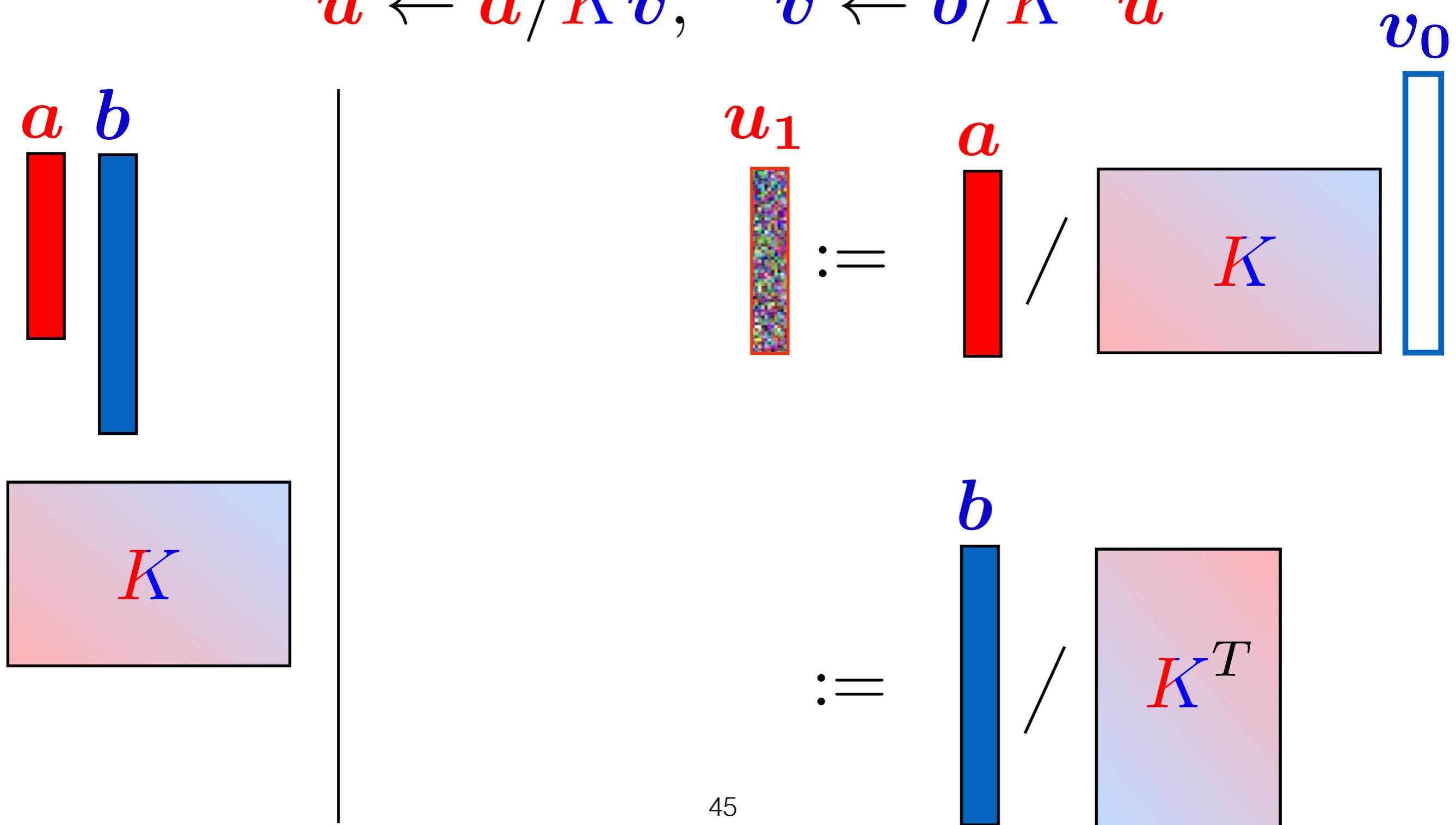
$$\mathbf{u} \leftarrow \mathbf{a}/K\mathbf{v}, \quad \mathbf{v} \leftarrow \mathbf{b}/K^T \mathbf{u}$$



Fast & Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (\mathbf{u}, \mathbf{v})

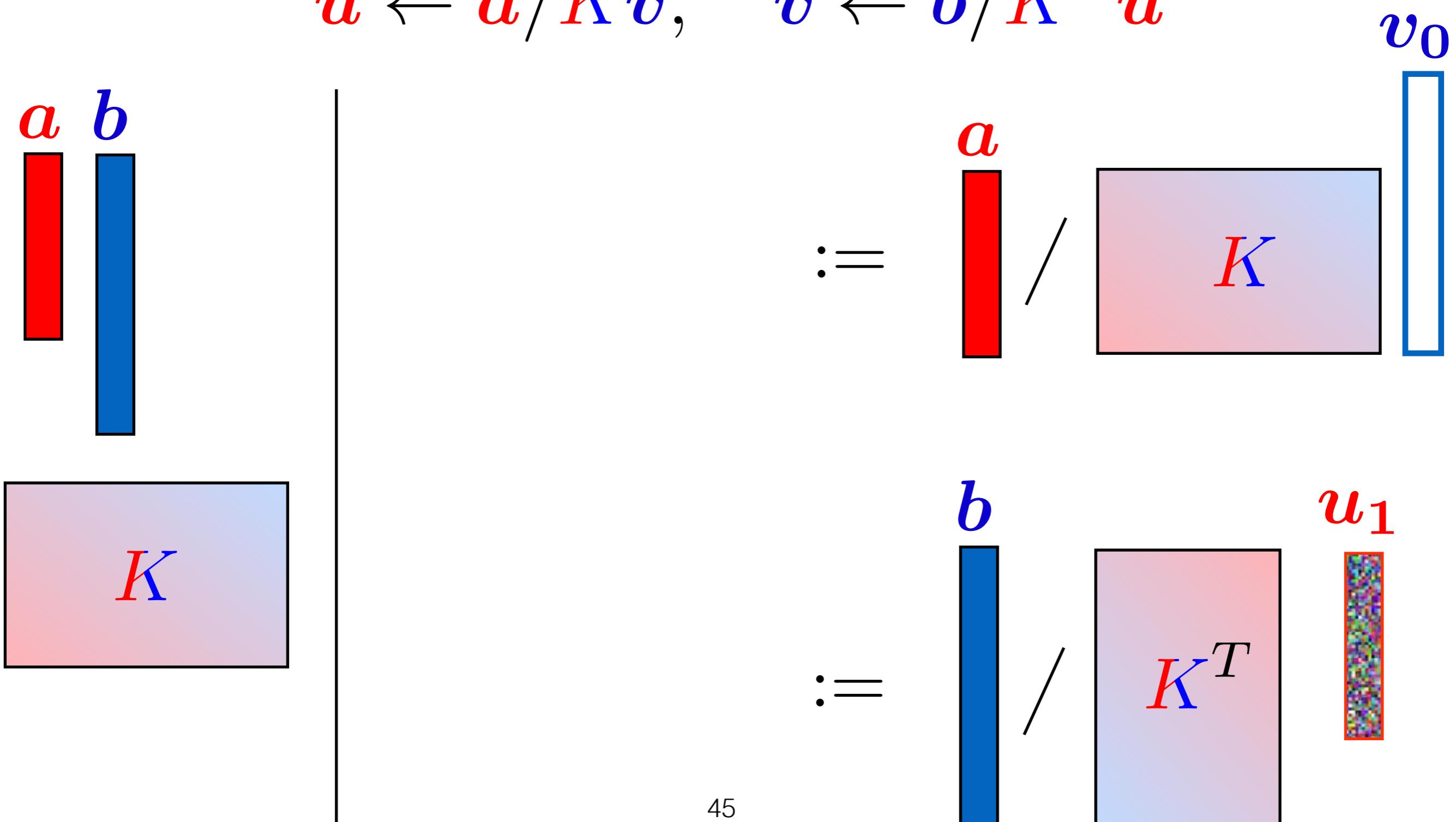
$$\mathbf{u} \leftarrow \mathbf{a}/K\mathbf{v}, \quad \mathbf{v} \leftarrow \mathbf{b}/K^T \mathbf{u}$$



Fast & Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (\mathbf{u}, \mathbf{v})

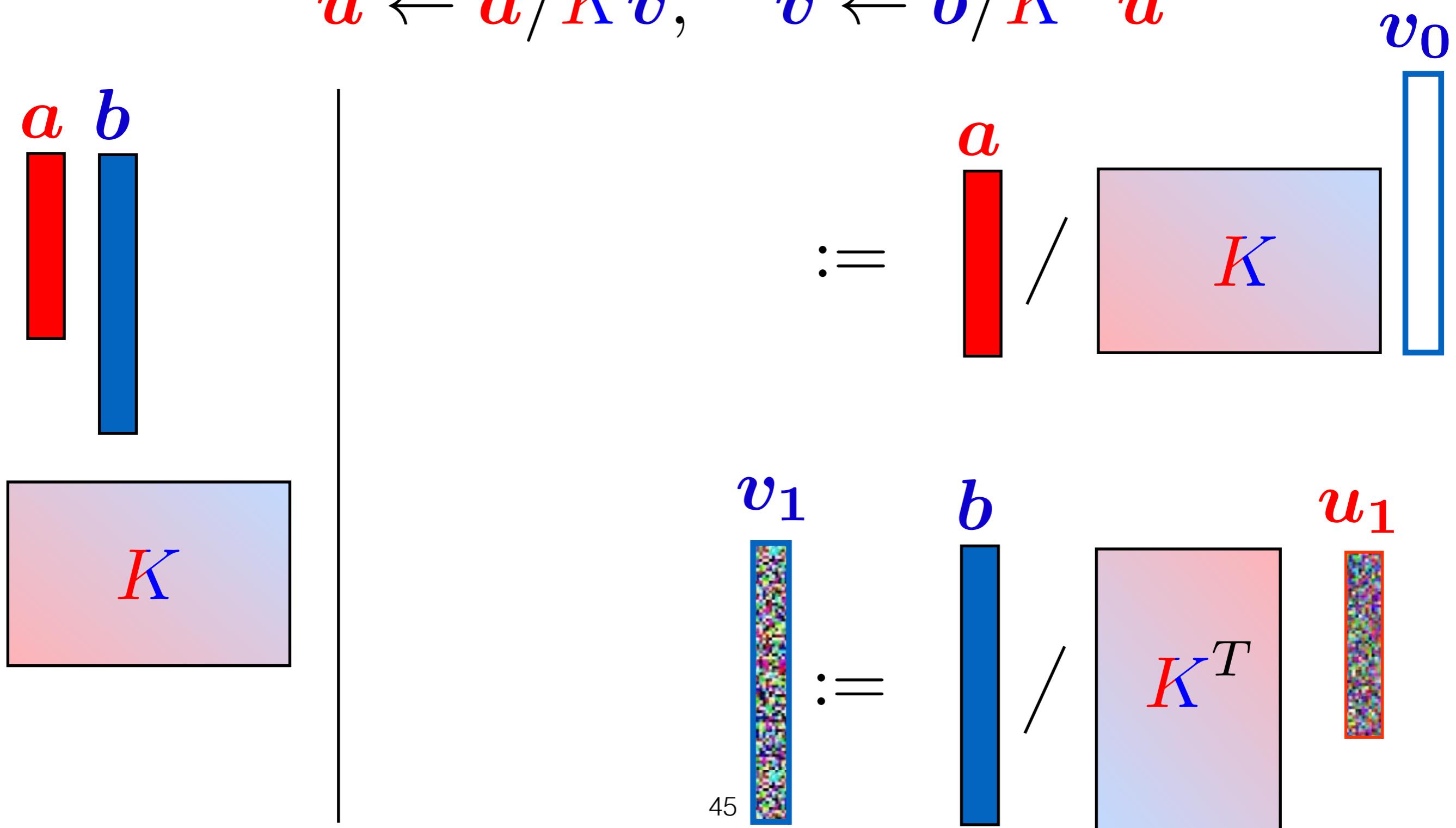
$$\mathbf{u} \leftarrow \mathbf{a}/K\mathbf{v}, \quad \mathbf{v} \leftarrow \mathbf{b}/K^T \mathbf{u}$$



Fast & Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (\mathbf{u}, \mathbf{v})

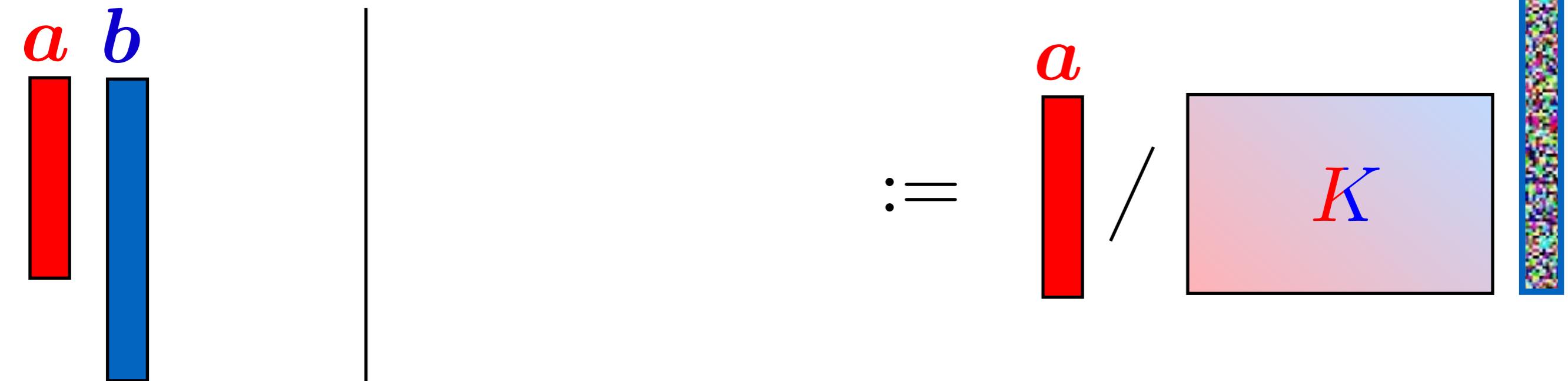
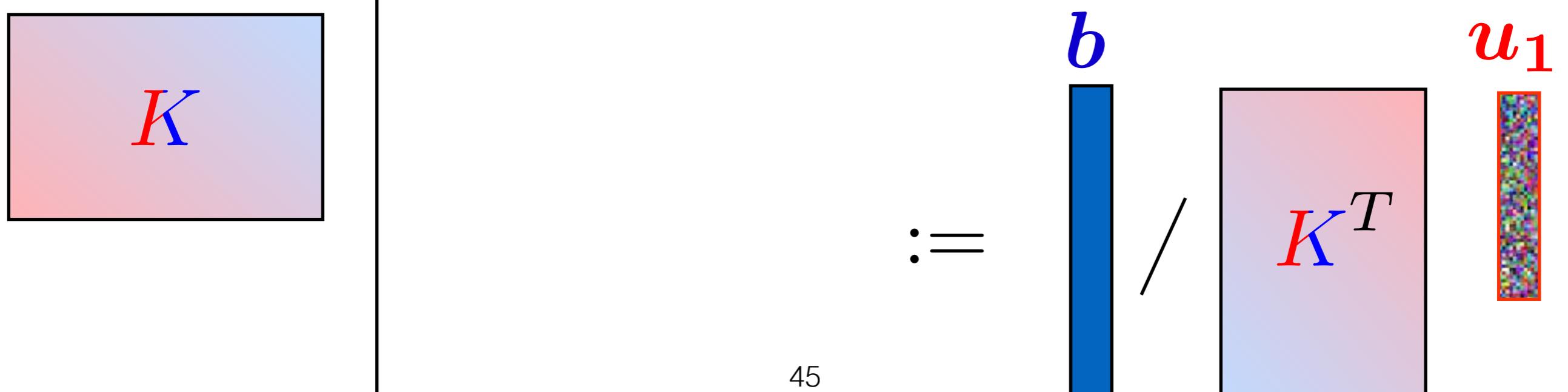
$$\mathbf{u} \leftarrow \mathbf{a}/K\mathbf{v}, \quad \mathbf{v} \leftarrow \mathbf{b}/K^T \mathbf{u}$$



Fast & Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (\mathbf{u}, \mathbf{v})

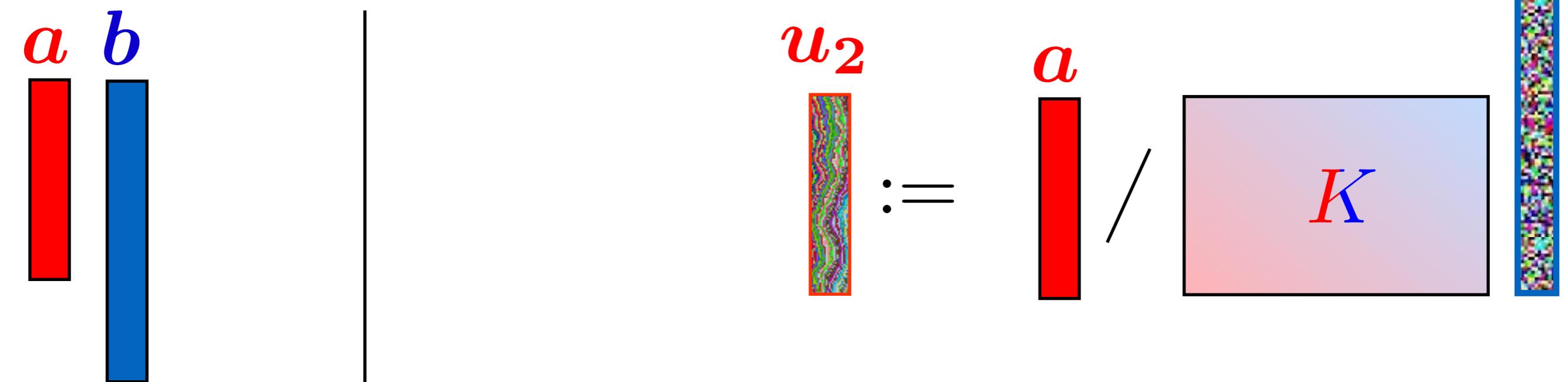
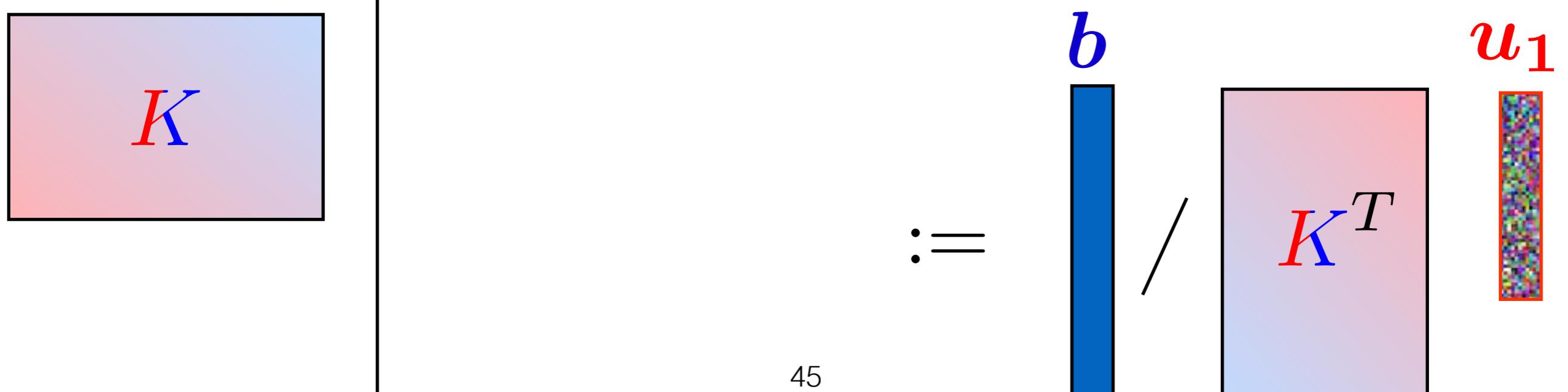
$$\mathbf{u} \leftarrow \mathbf{a}/K\mathbf{v}, \quad \mathbf{v} \leftarrow \mathbf{b}/K^T \mathbf{u}$$



Fast & Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (\mathbf{u}, \mathbf{v})

$$\mathbf{u} \leftarrow \mathbf{a}/K\mathbf{v}, \quad \mathbf{v} \leftarrow \mathbf{b}/K^T \mathbf{u}$$

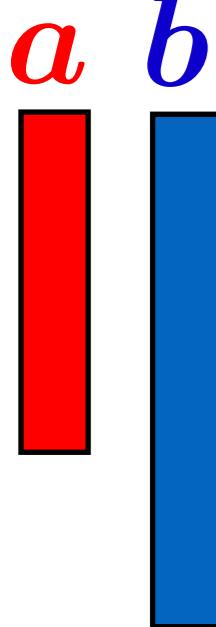


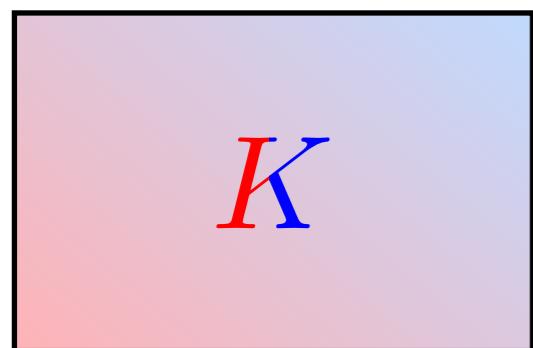
Fast & Scalable Algorithm

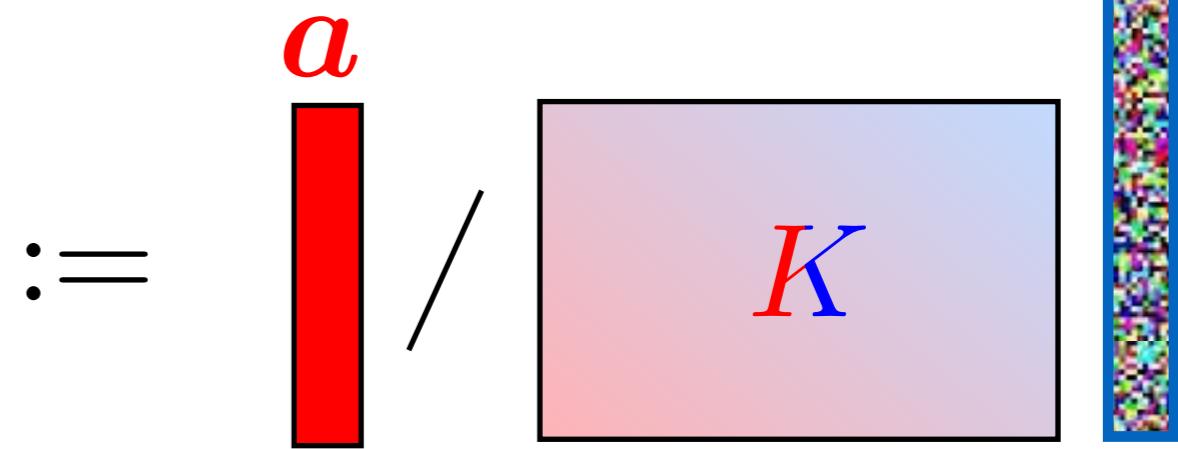
- [Sinkhorn'64] fixed-point iterations for (\mathbf{u}, \mathbf{v})

$$\mathbf{u} \leftarrow \mathbf{a}/K\mathbf{v}, \quad \mathbf{v} \leftarrow \mathbf{b}/K^T \mathbf{u}$$

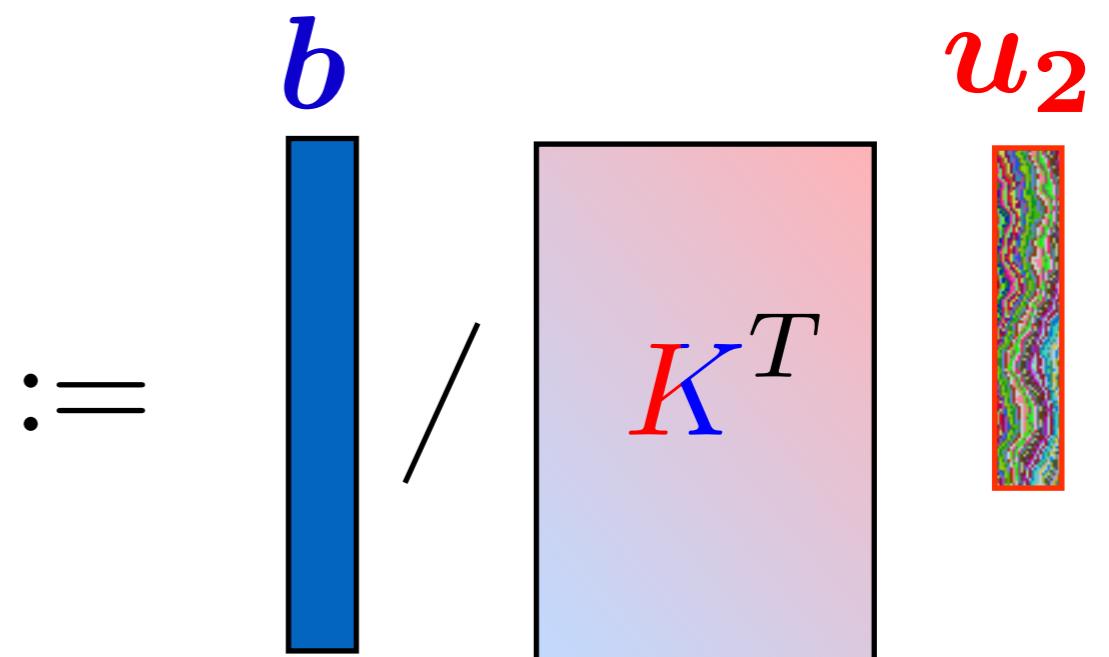
v_1

$$\begin{matrix} \mathbf{a} & \mathbf{b} \end{matrix}$$



$$\mathbf{K}$$

$$:= \begin{matrix} \mathbf{a} \\ \mathbf{b} \end{matrix} / \mathbf{K}$$


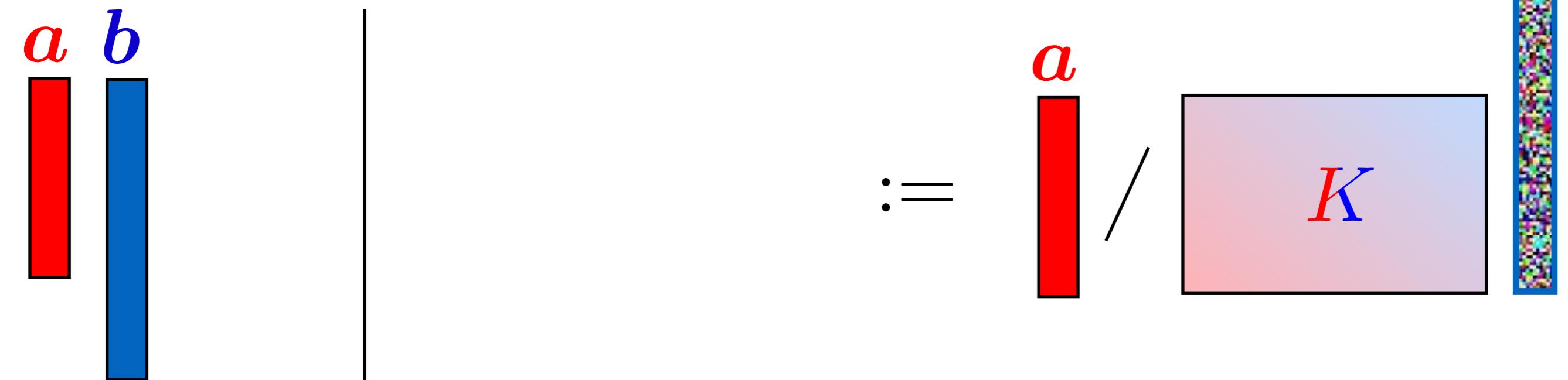
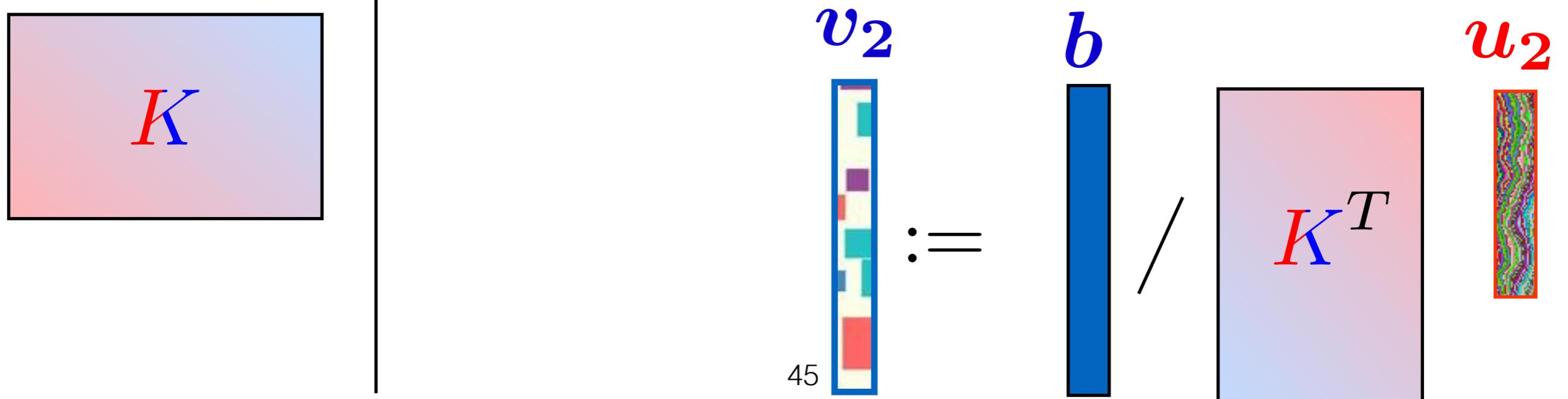
u_2

$$:= \mathbf{b} / \mathbf{K}^T$$


Fast & Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (\mathbf{u}, \mathbf{v})

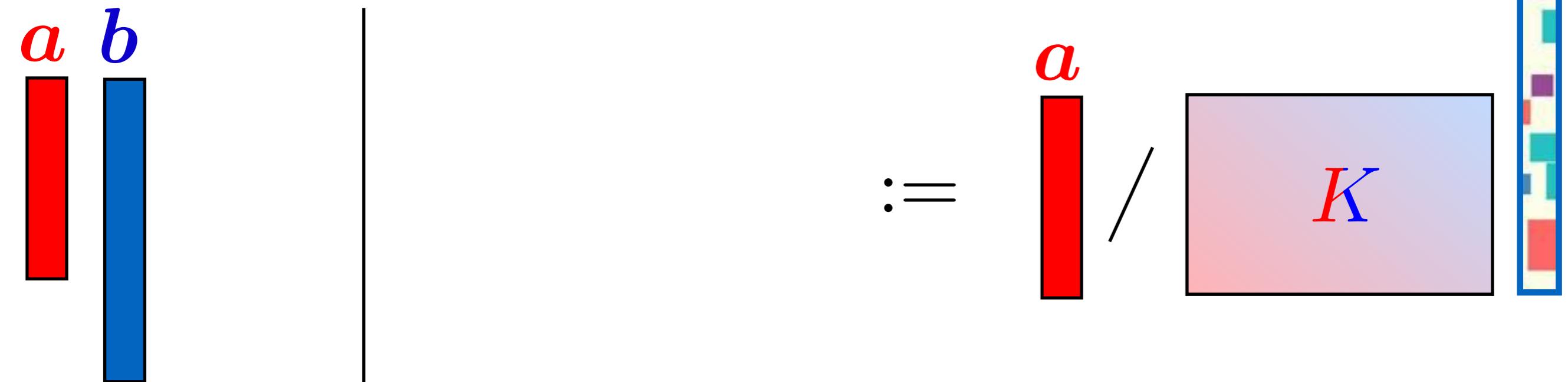
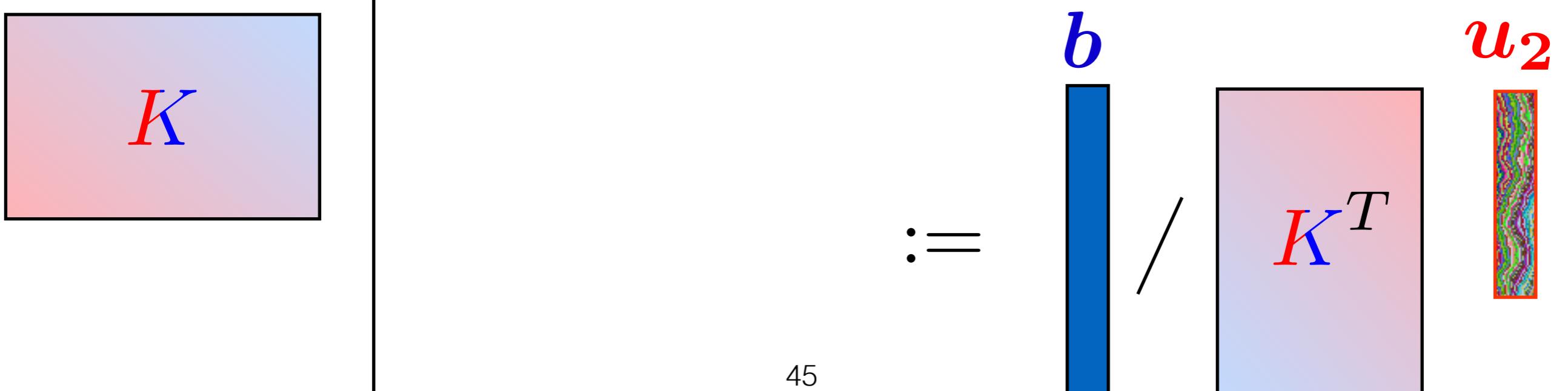
$$\mathbf{u} \leftarrow \mathbf{a}/K\mathbf{v}, \quad \mathbf{v} \leftarrow \mathbf{b}/K^T \mathbf{u}$$



Fast & Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (\mathbf{u}, \mathbf{v})

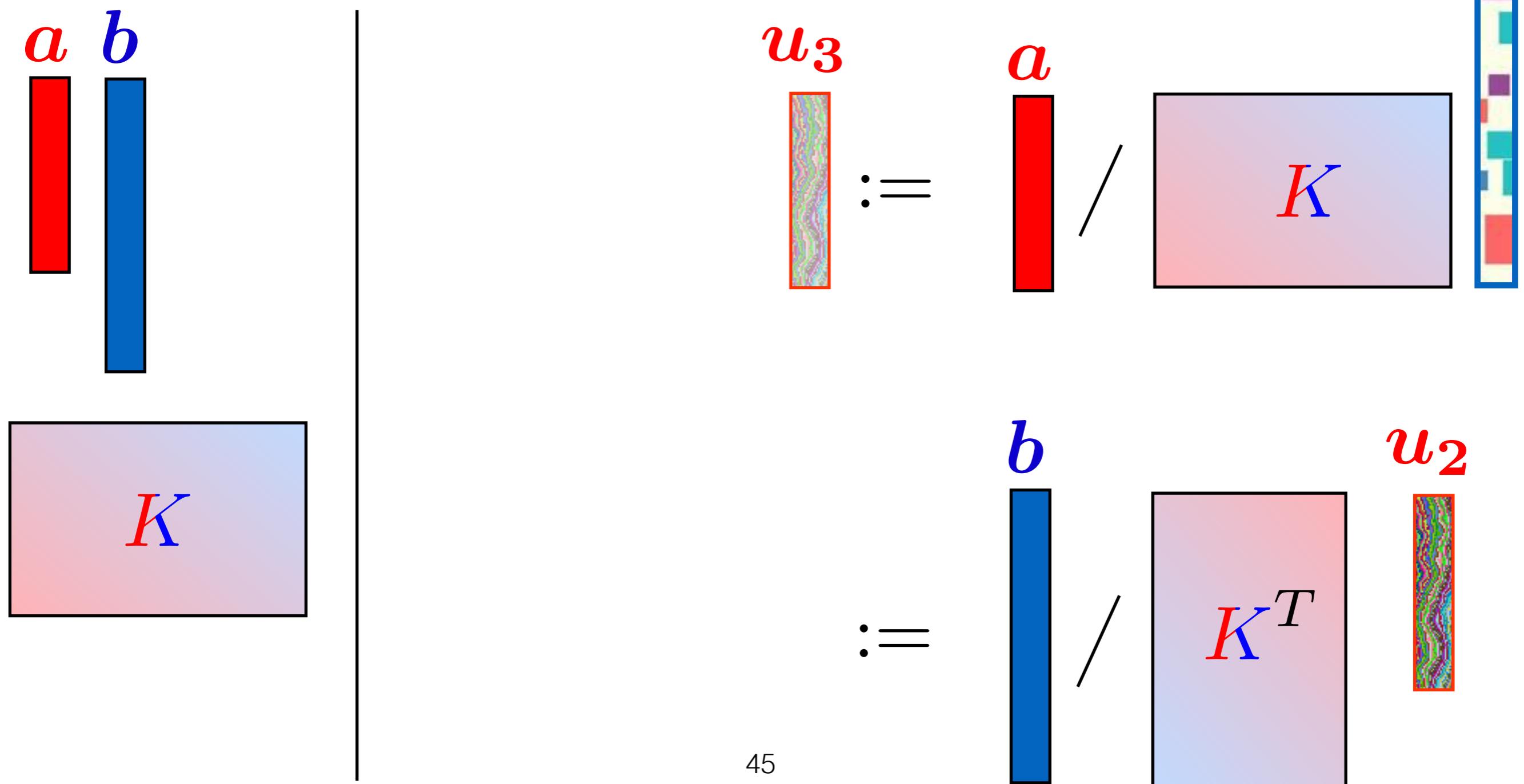
$$\mathbf{u} \leftarrow \mathbf{a}/K\mathbf{v}, \quad \mathbf{v} \leftarrow \mathbf{b}/K^T \mathbf{u}$$



Fast & Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (\mathbf{u}, \mathbf{v})

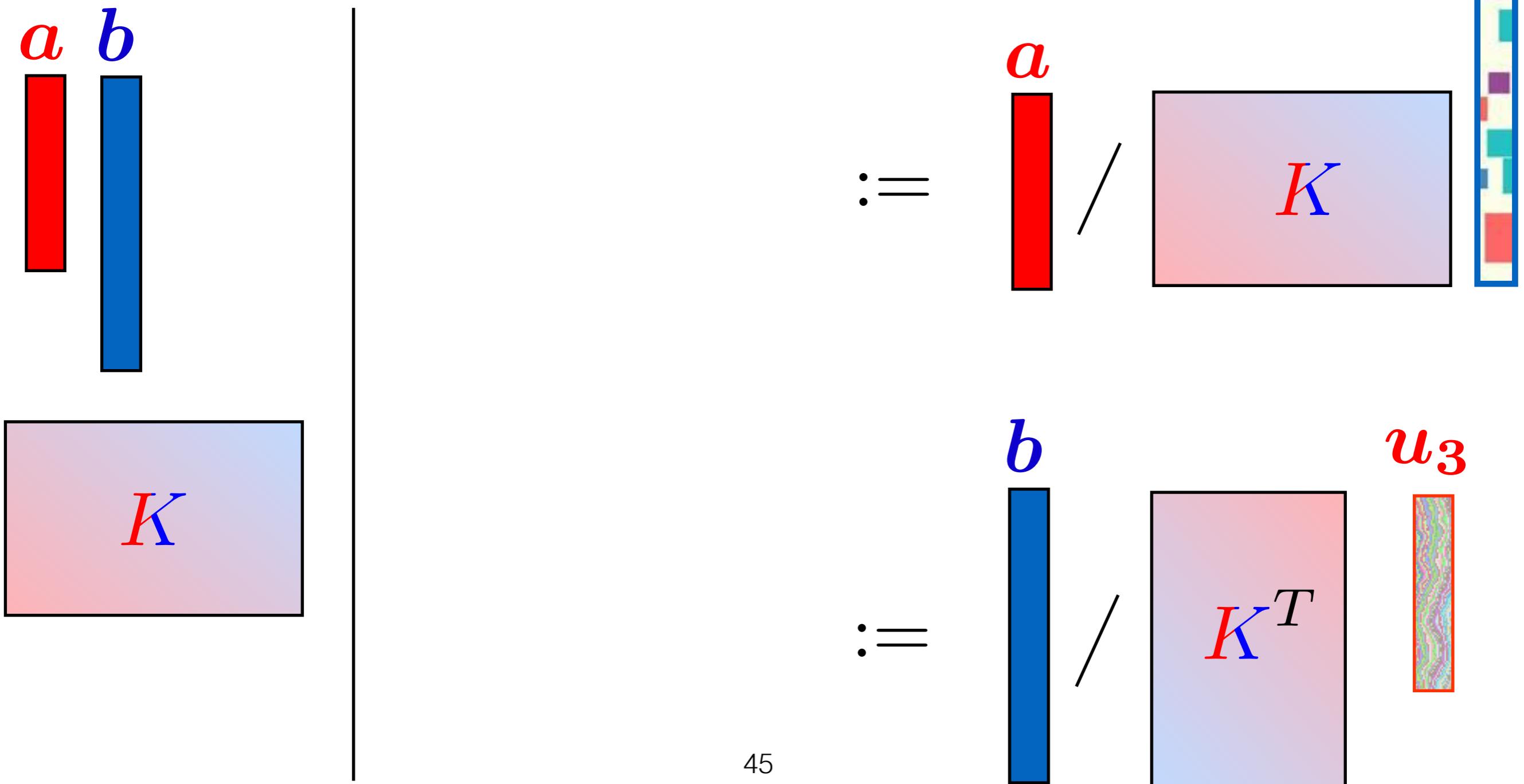
$$\mathbf{u} \leftarrow \mathbf{a}/K\mathbf{v}, \quad \mathbf{v} \leftarrow \mathbf{b}/K^T \mathbf{u}$$



Fast & Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations for (\mathbf{u}, \mathbf{v})

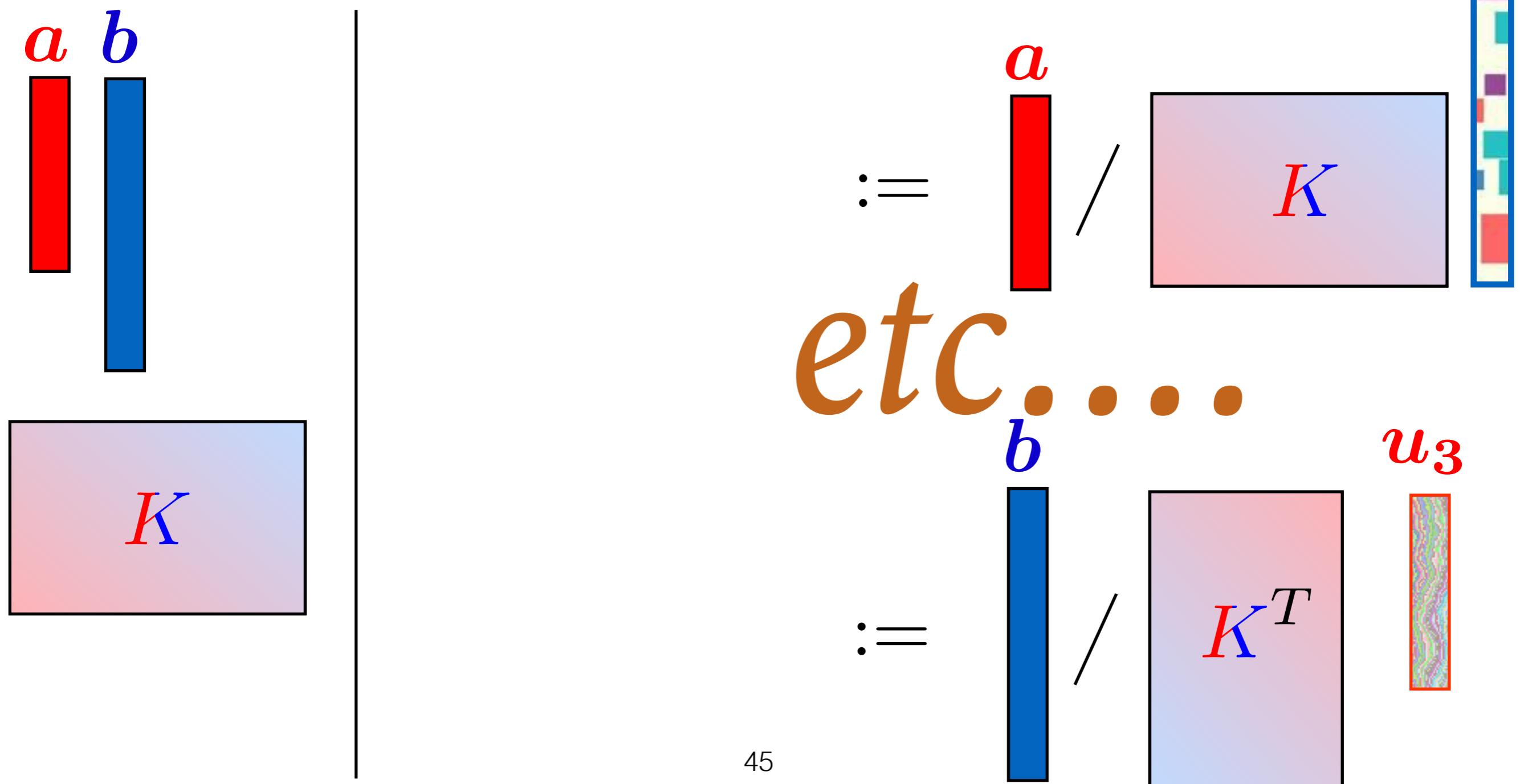
$$\mathbf{u} \leftarrow \mathbf{a}/K\mathbf{v}, \quad \mathbf{v} \leftarrow \mathbf{b}/K^T \mathbf{u}$$



Fast & Scalable Algorithm

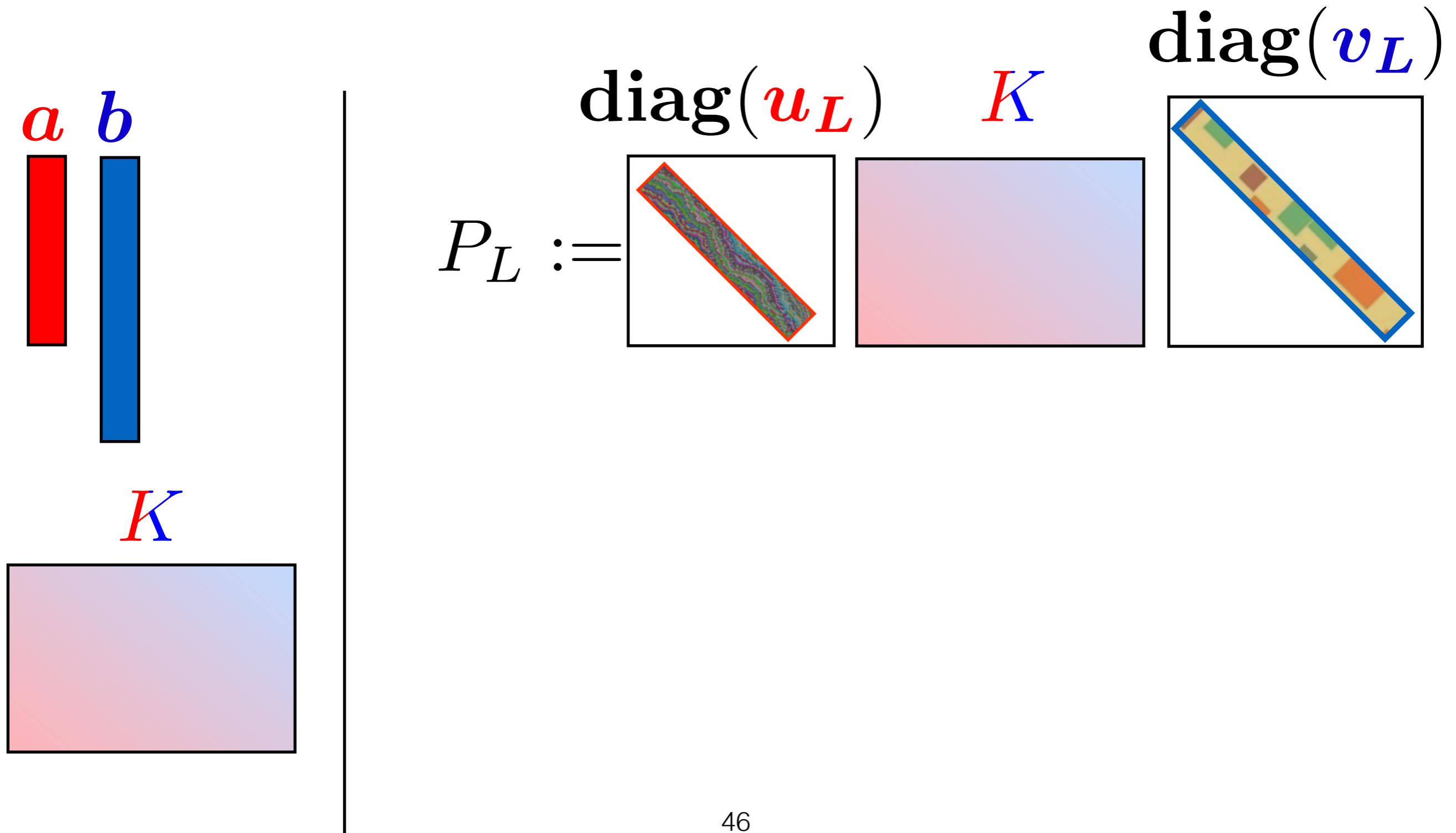
- [Sinkhorn'64] fixed-point iterations for (\mathbf{u}, \mathbf{v})

$$\mathbf{u} \leftarrow \mathbf{a}/K\mathbf{v}, \quad \mathbf{v} \leftarrow \mathbf{b}/K^T \mathbf{u}$$



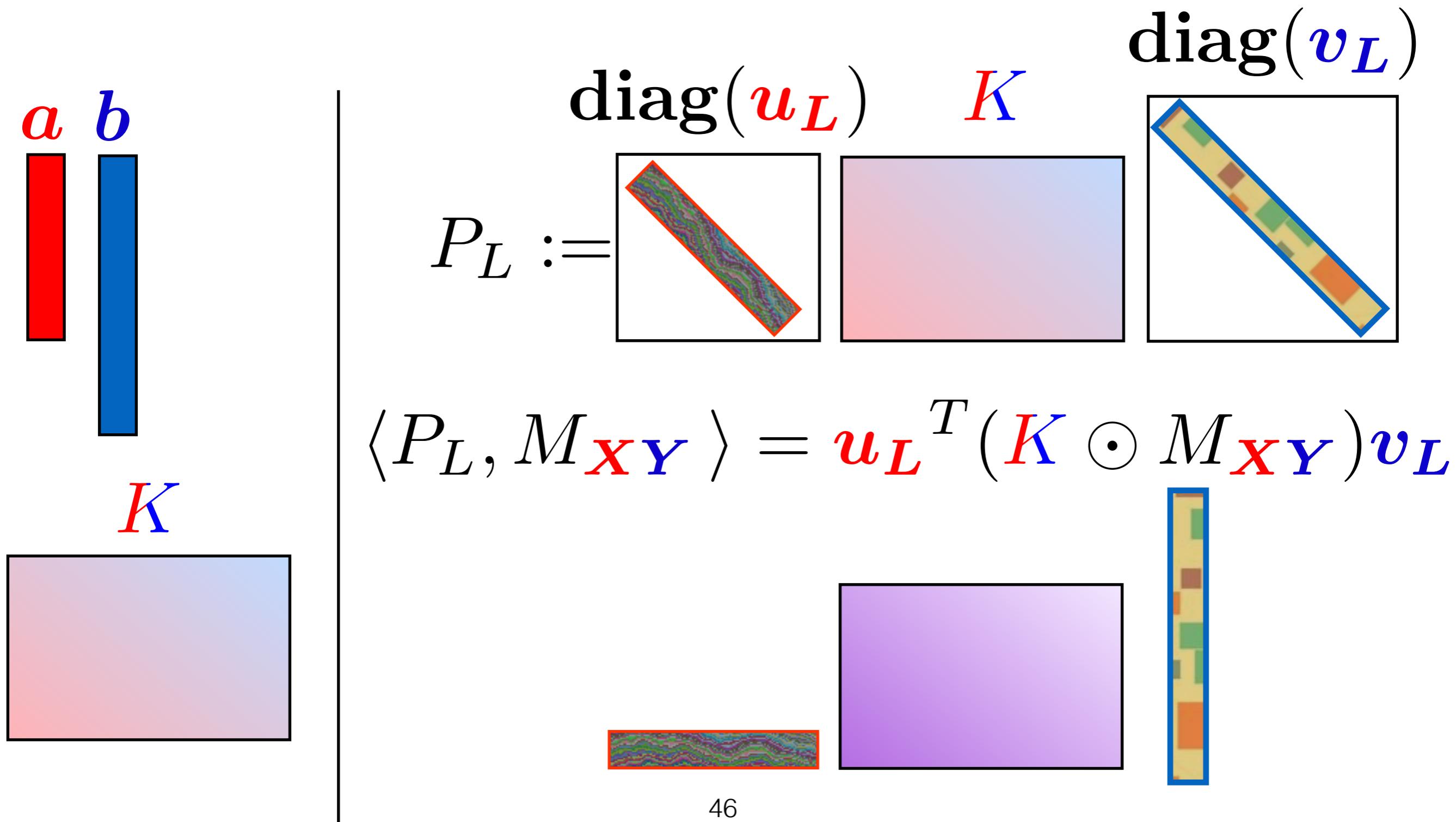
Fast & Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations.



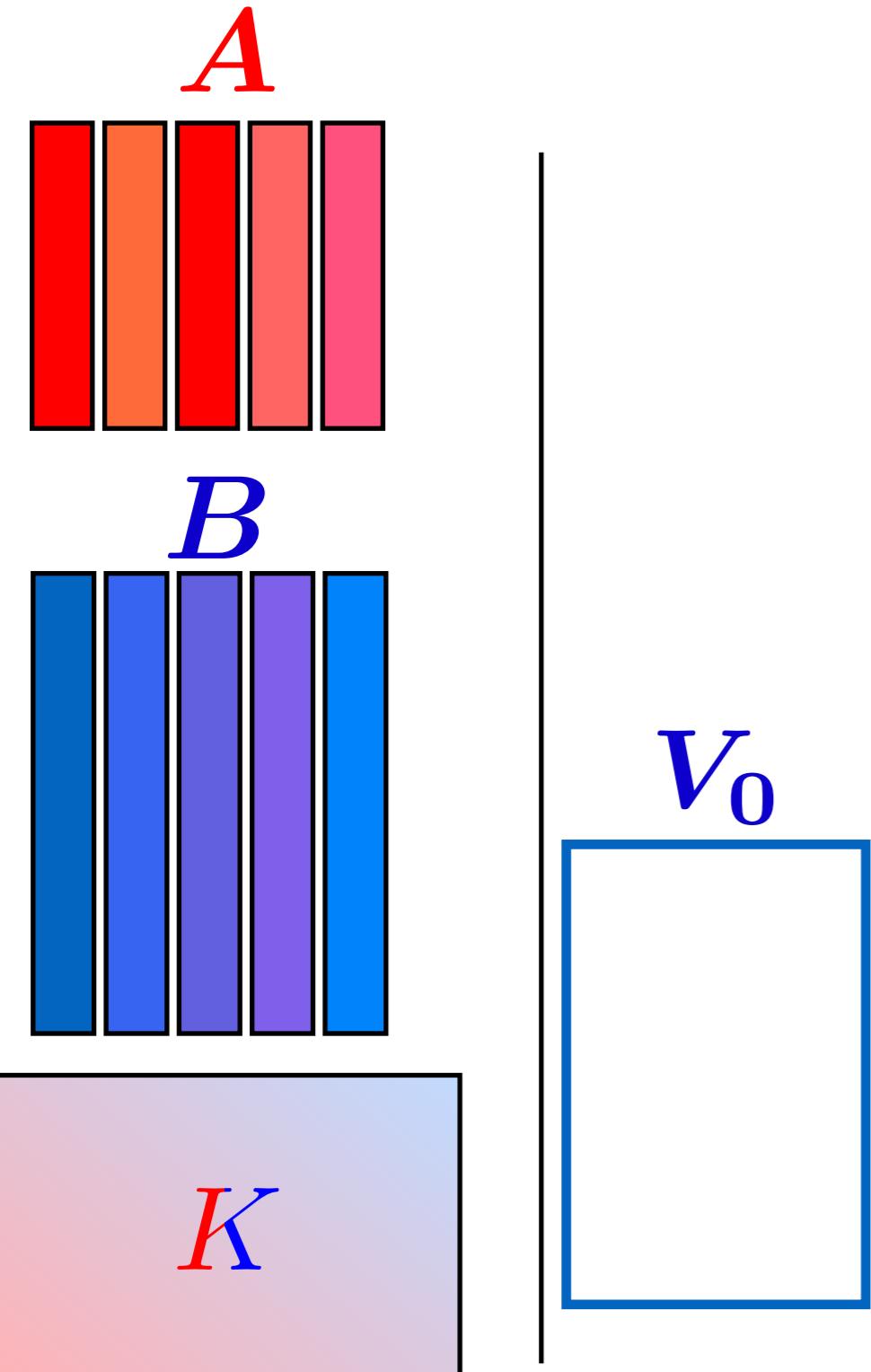
Fast & Scalable Algorithm

- [Sinkhorn'64] fixed-point iterations.



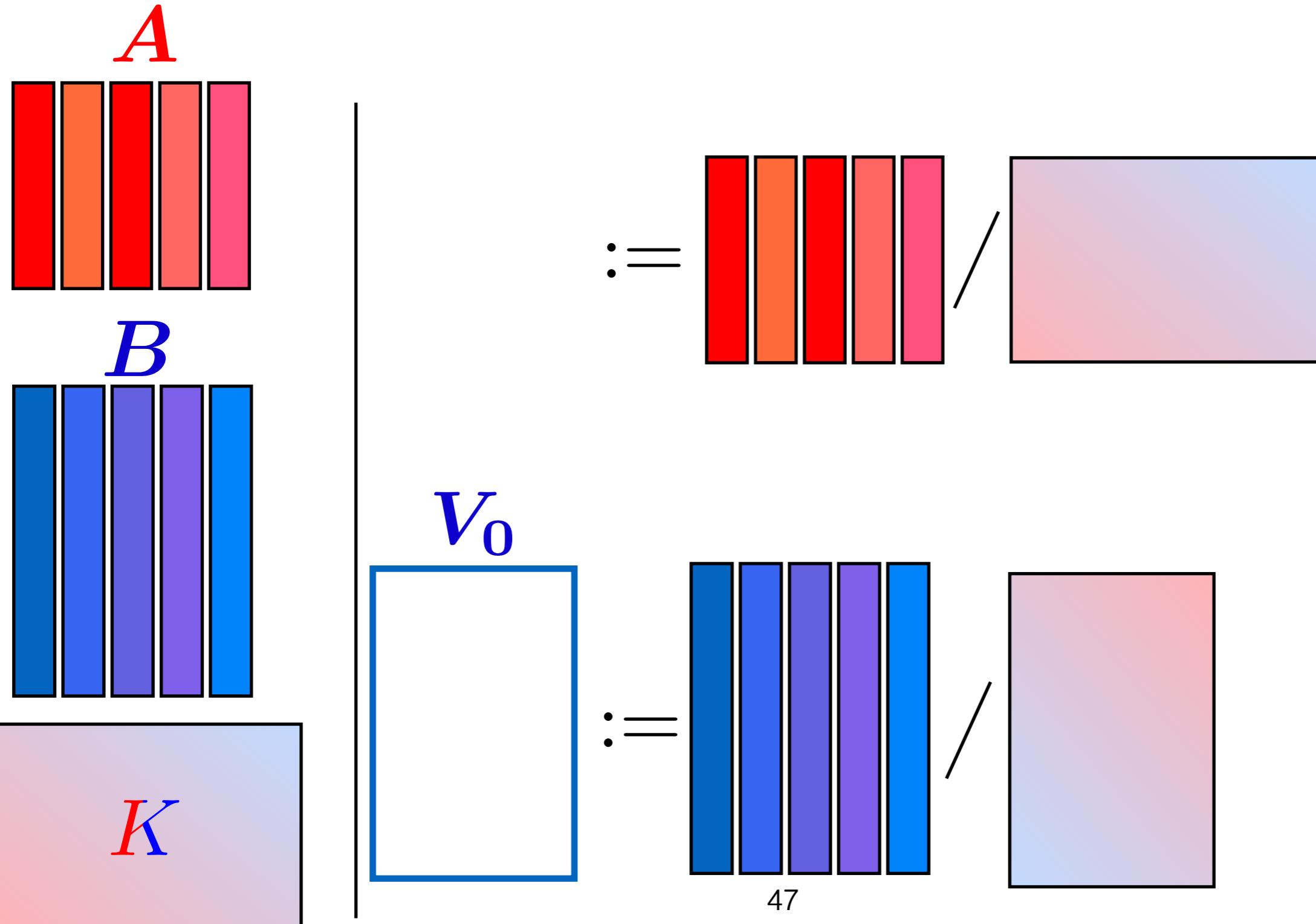
Also embarrassingly parallel

- [Sinkhorn'64] with *matrix* fixed-point iterations



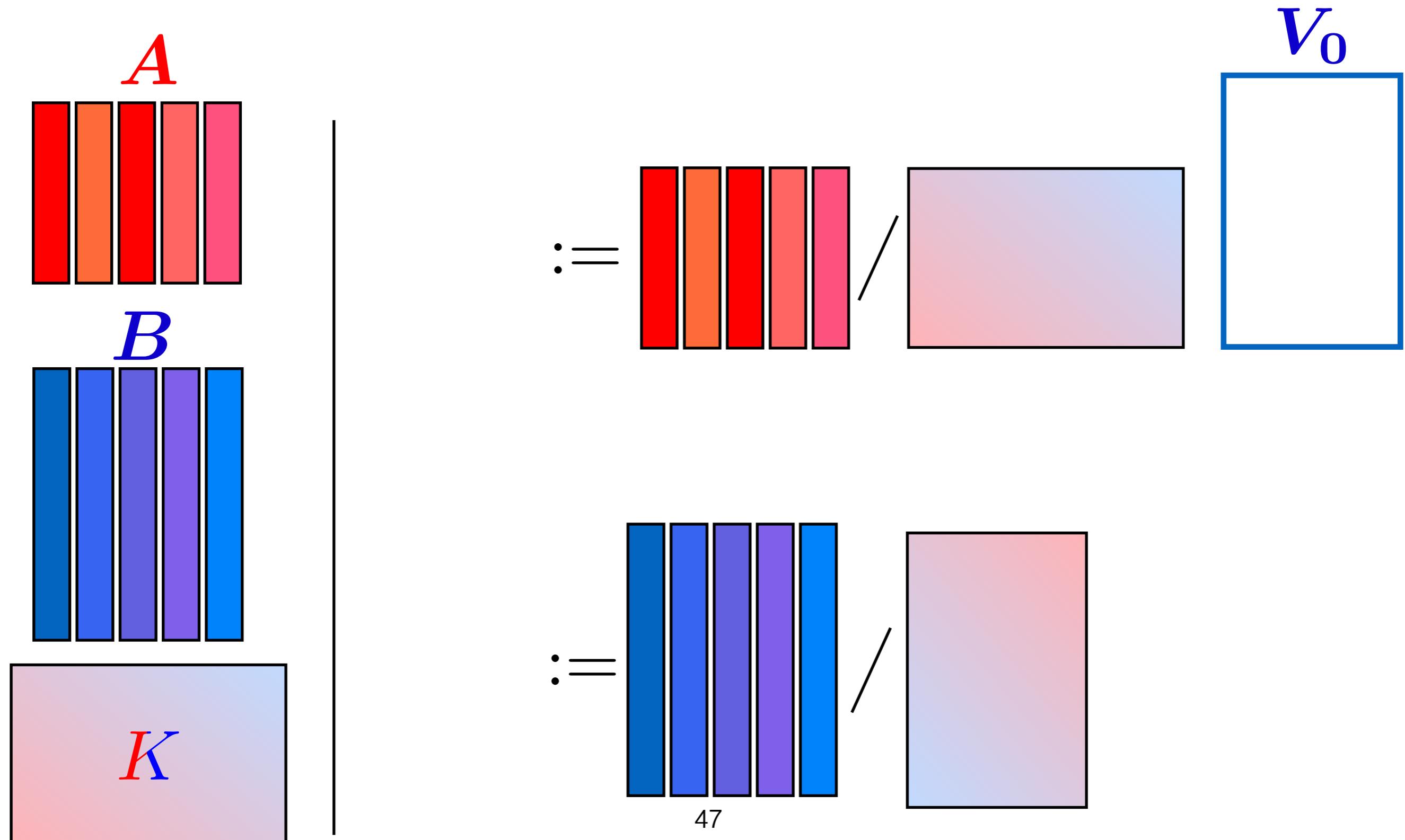
Also embarrassingly parallel

- [Sinkhorn'64] with *matrix* fixed-point iterations



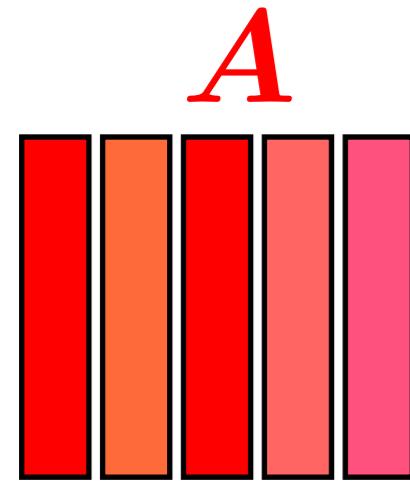
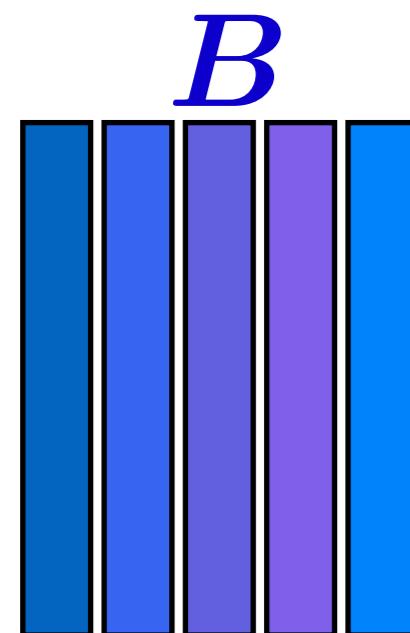
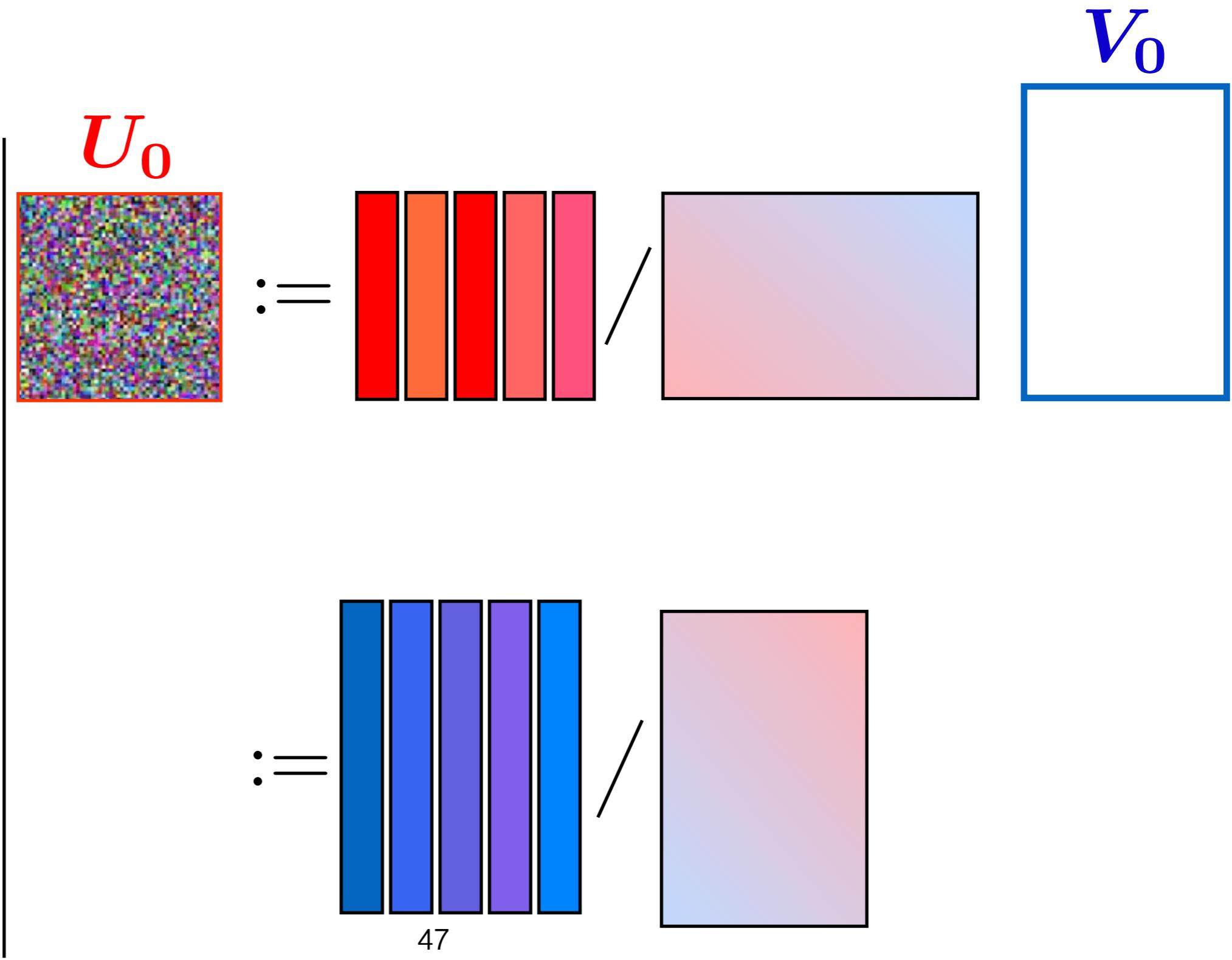
Also embarrassingly parallel

- [Sinkhorn'64] with *matrix* fixed-point iterations



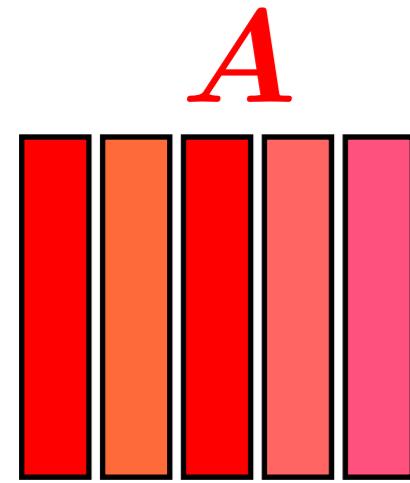
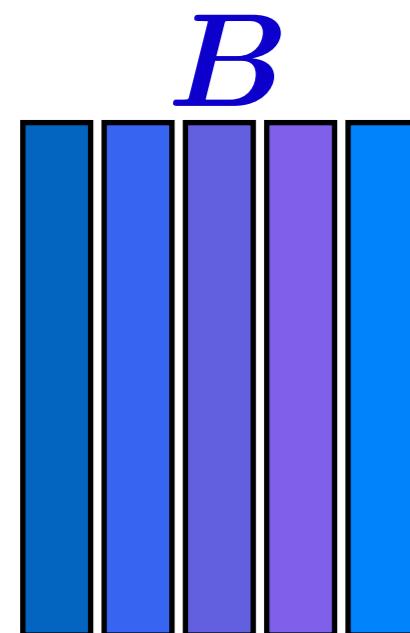
Also embarrassingly parallel

- [Sinkhorn'64] with *matrix* fixed-point iterations

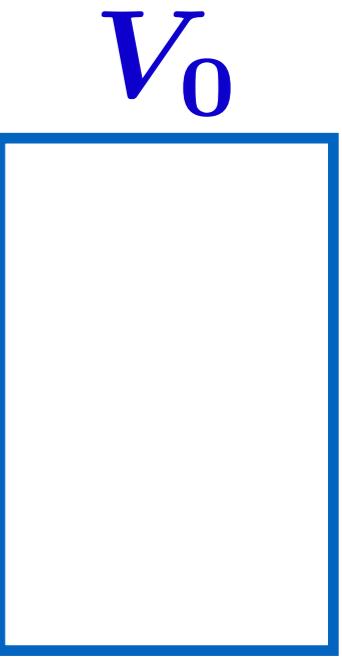


Also embarrassingly parallel

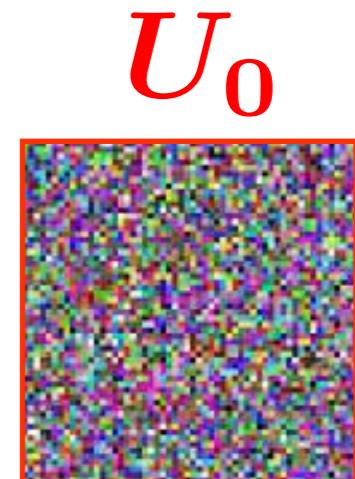
- [Sinkhorn'64] with *matrix* fixed-point iterations



$$:= \begin{array}{c} \text{red bar} \\ \text{orange bar} \\ \text{red bar} \\ \text{pink bar} \\ \text{red bar} \end{array}$$



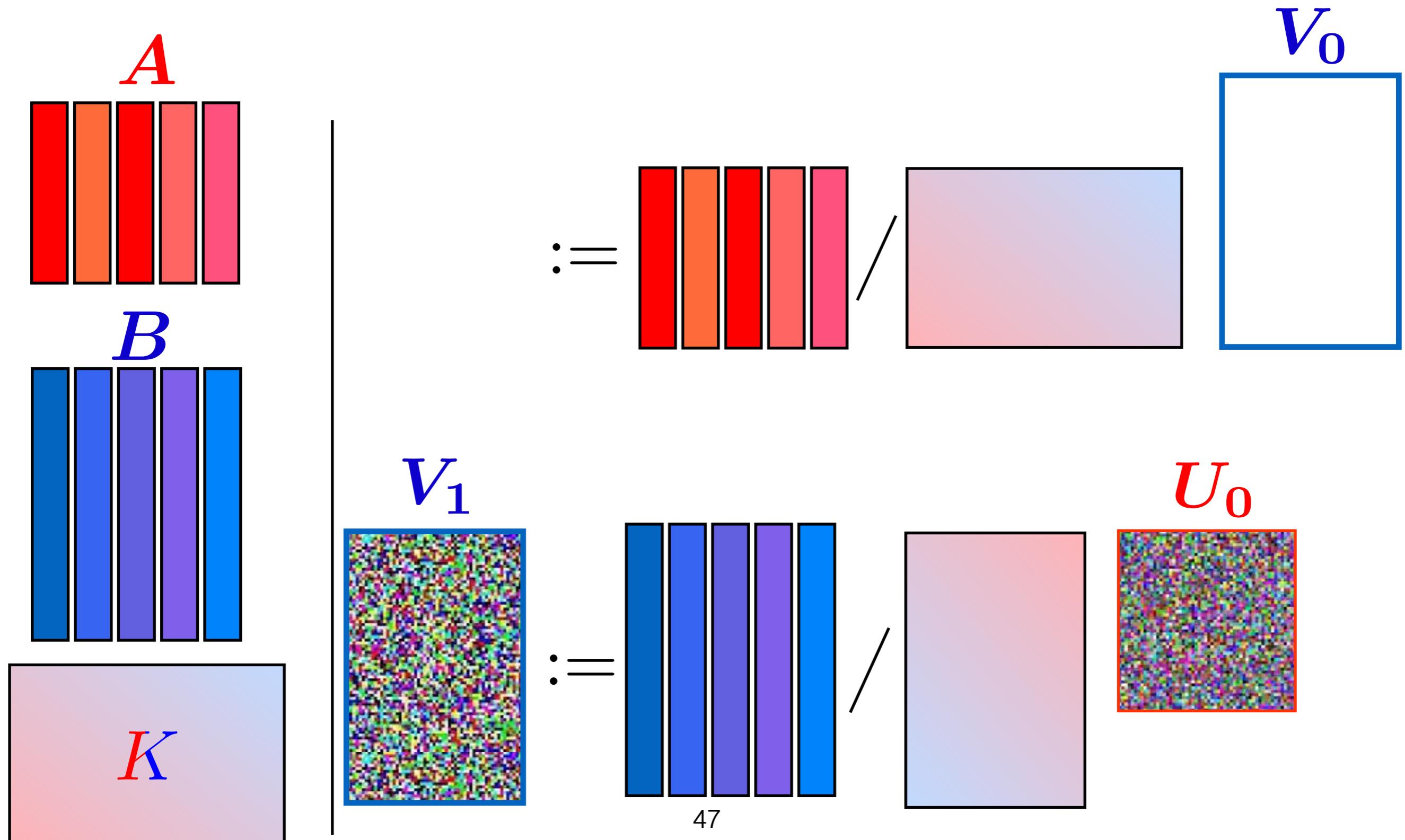
$$:= \begin{array}{c} \text{blue bar} \\ \text{blue bar} \\ \text{purple bar} \\ \text{purple bar} \\ \text{blue bar} \end{array}$$



U_0

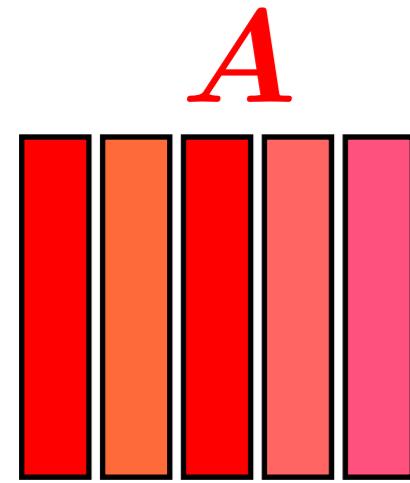
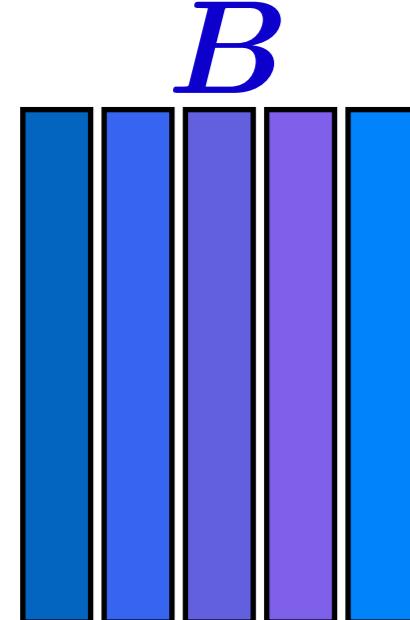
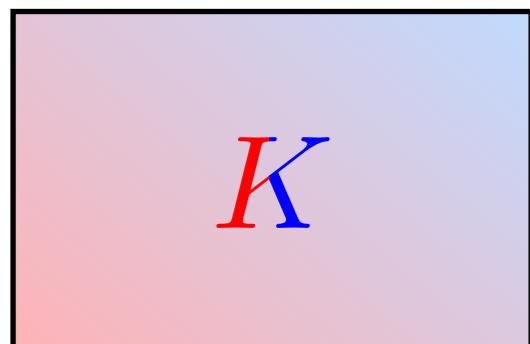
Also embarrassingly parallel

- [Sinkhorn'64] with *matrix* fixed-point iterations



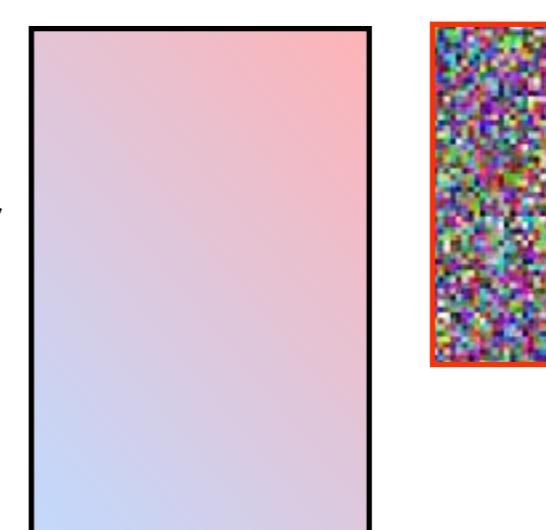
Also embarrassingly parallel

- [Sinkhorn'64] with *matrix* fixed-point iterations



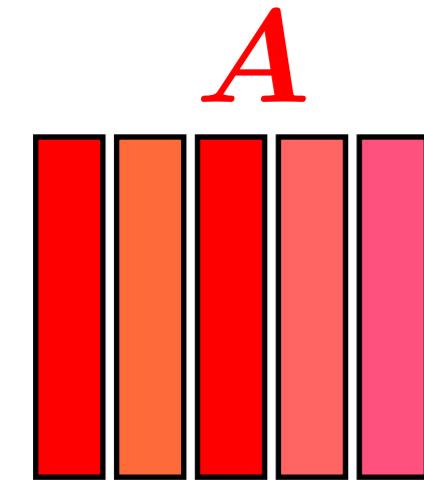
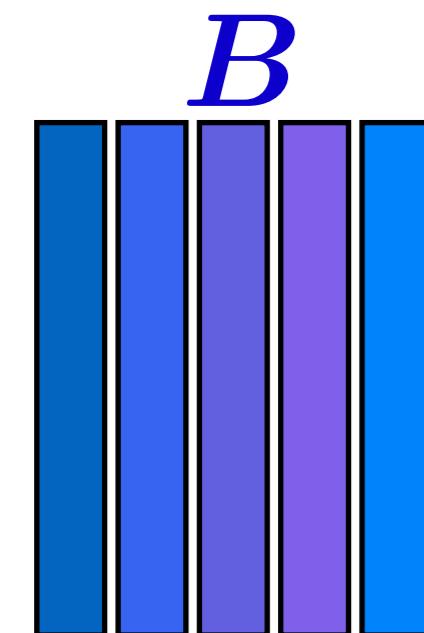
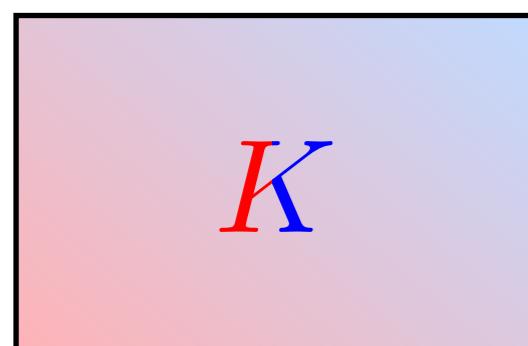
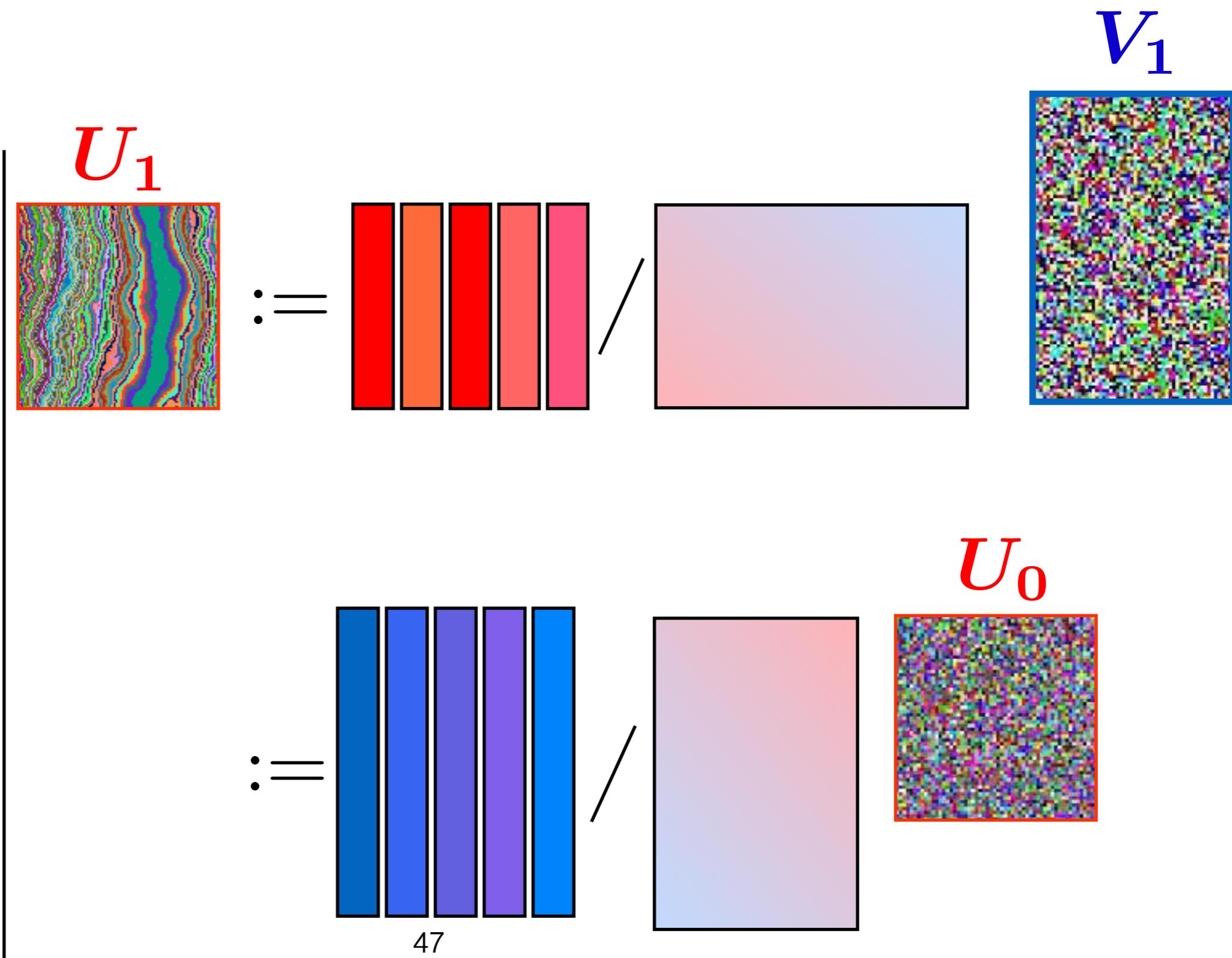
$$:= \begin{array}{c} \text{red bar} \\ \text{orange bar} \\ \text{red bar} \\ \text{pink bar} \\ \text{red bar} \end{array}$$

$$:= \begin{array}{c} \text{blue bar} \\ \text{blue bar} \\ \text{purple bar} \\ \text{purple bar} \\ \text{blue bar} \end{array}$$



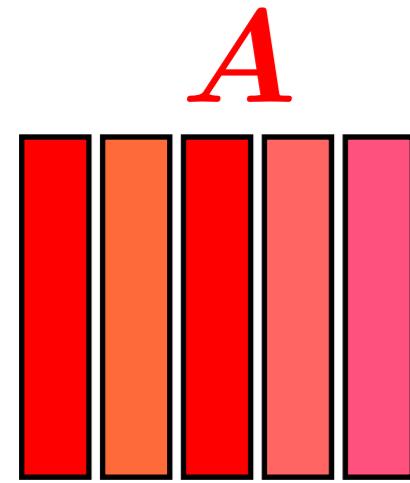
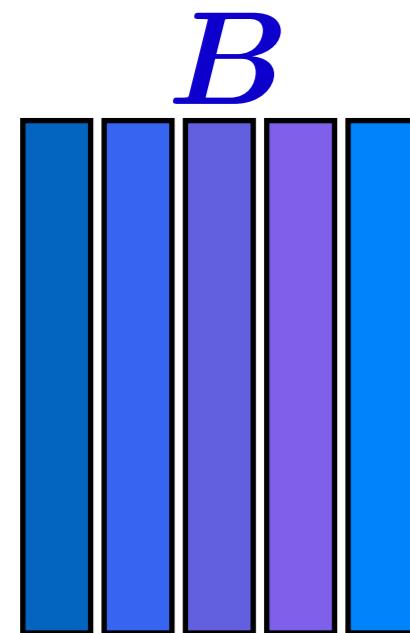
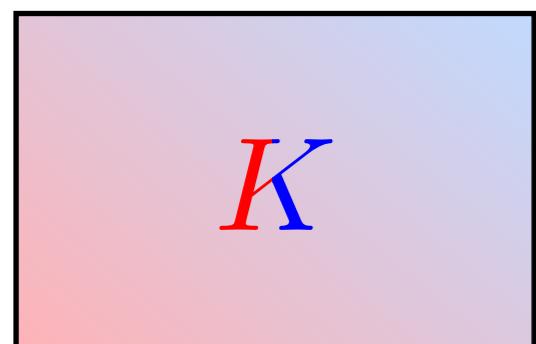
Also embarrassingly parallel

- [Sinkhorn'64] with *matrix* fixed-point iterations

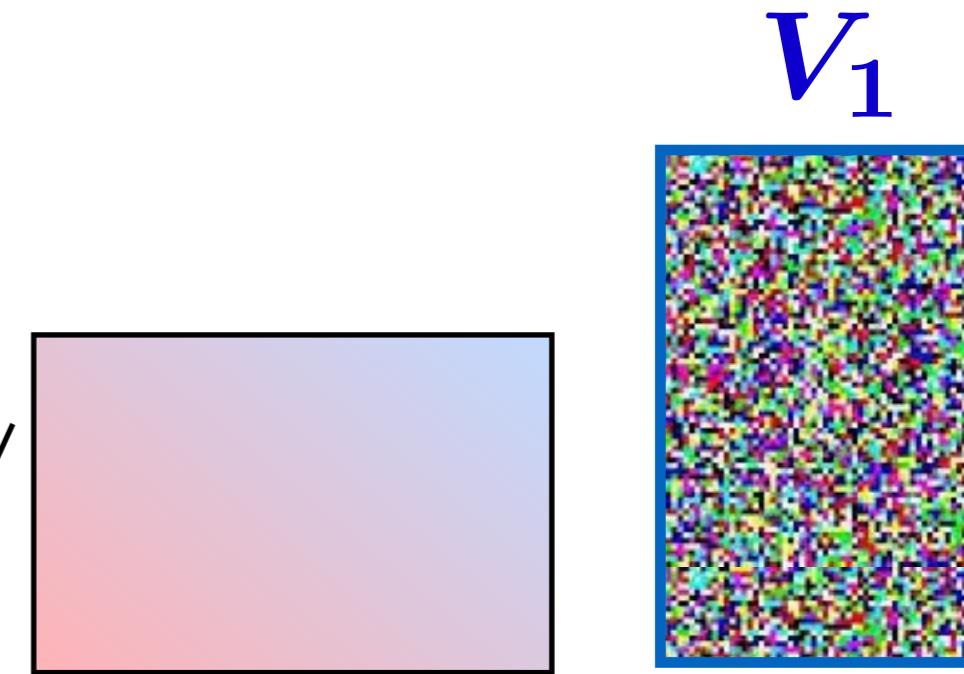
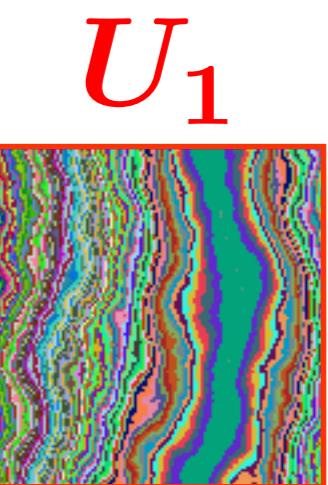


Also embarrassingly parallel

- [Sinkhorn'64] with *matrix* fixed-point iterations



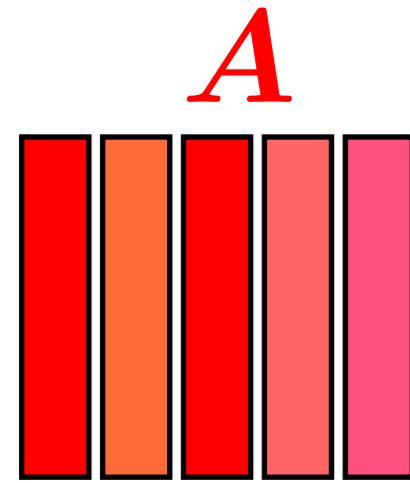
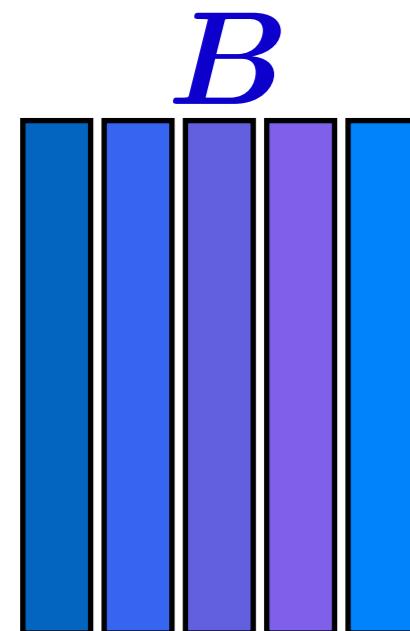
$$:= \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array}$$



$$:= \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array}$$

Also embarrassingly parallel

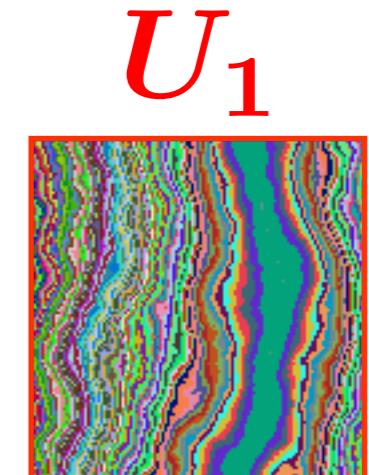
- [Sinkhorn'64] with *matrix* fixed-point iterations



$$:= \begin{array}{c} \text{red bar} \\ \text{orange bar} \\ \text{red bar} \\ \text{pink bar} \\ \text{red bar} \end{array} \quad \begin{array}{c} \text{pink gradient} \\ \text{blue gradient} \end{array}$$

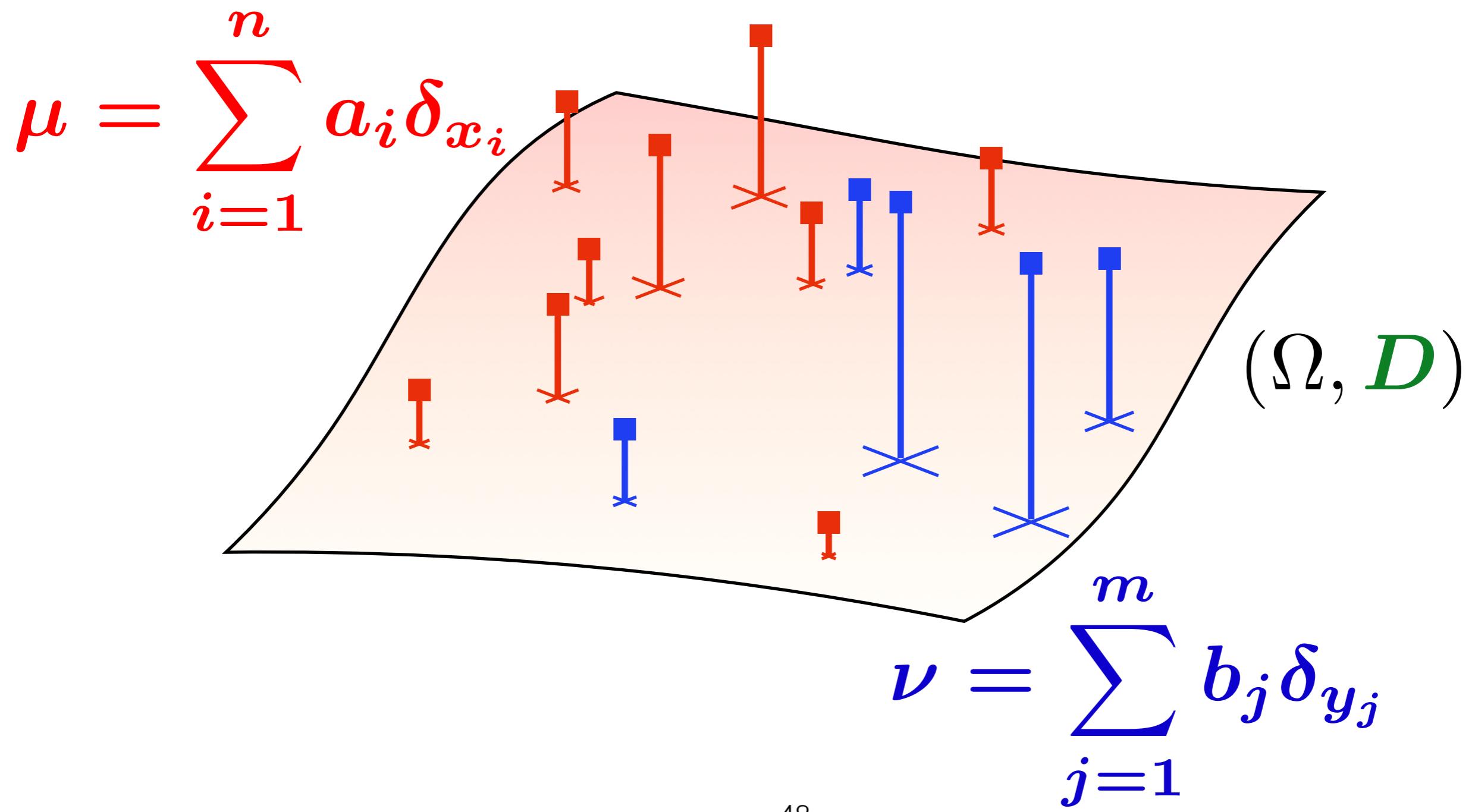
etc. . . .

$$:= \begin{array}{c} \text{blue bar} \\ \text{blue bar} \\ \text{purple bar} \\ \text{purple bar} \\ \text{blue bar} \end{array} \quad \begin{array}{c} \text{pink gradient} \\ \text{blue gradient} \end{array}$$



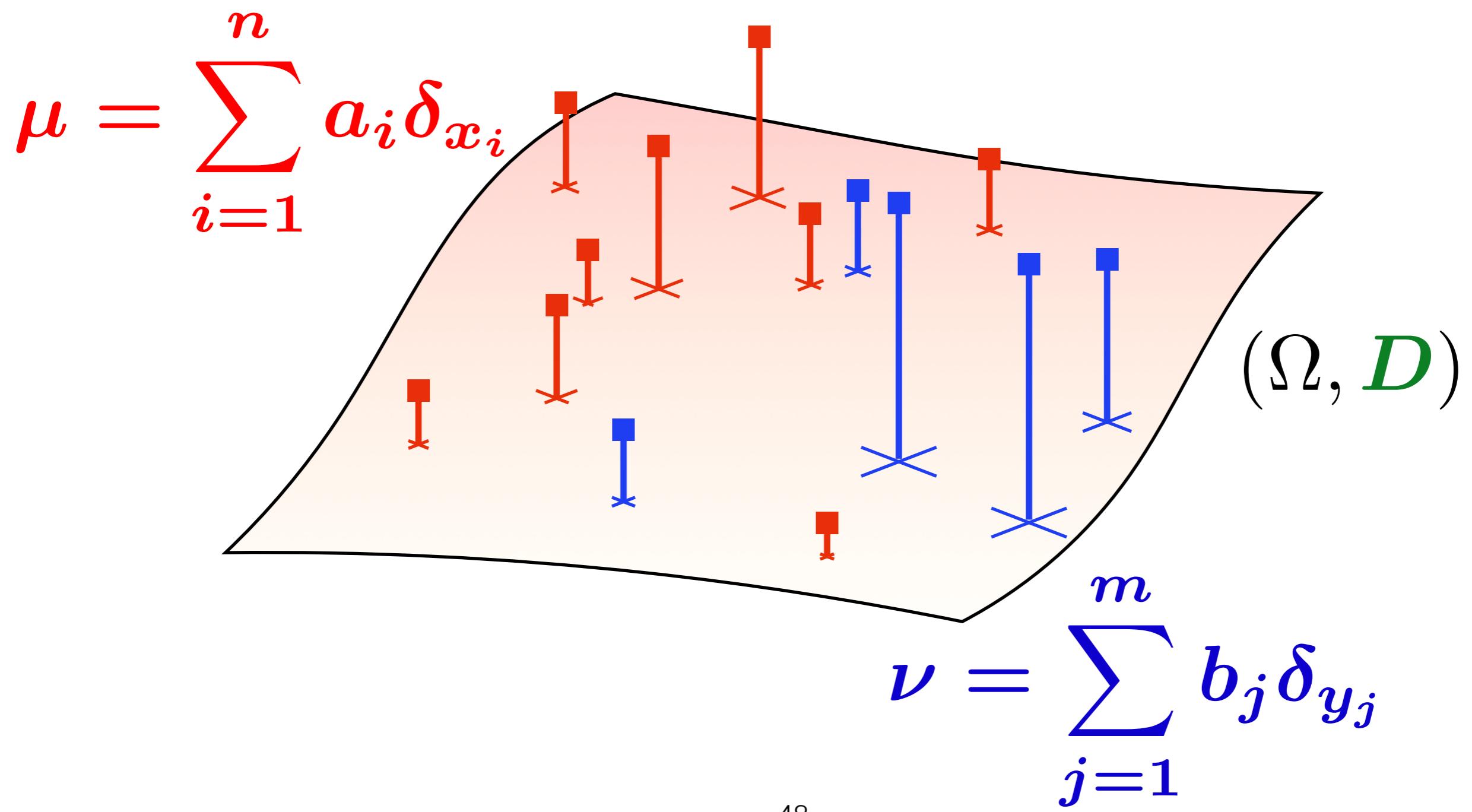
Differentiability of W

$$W((a, X), (b, Y))$$



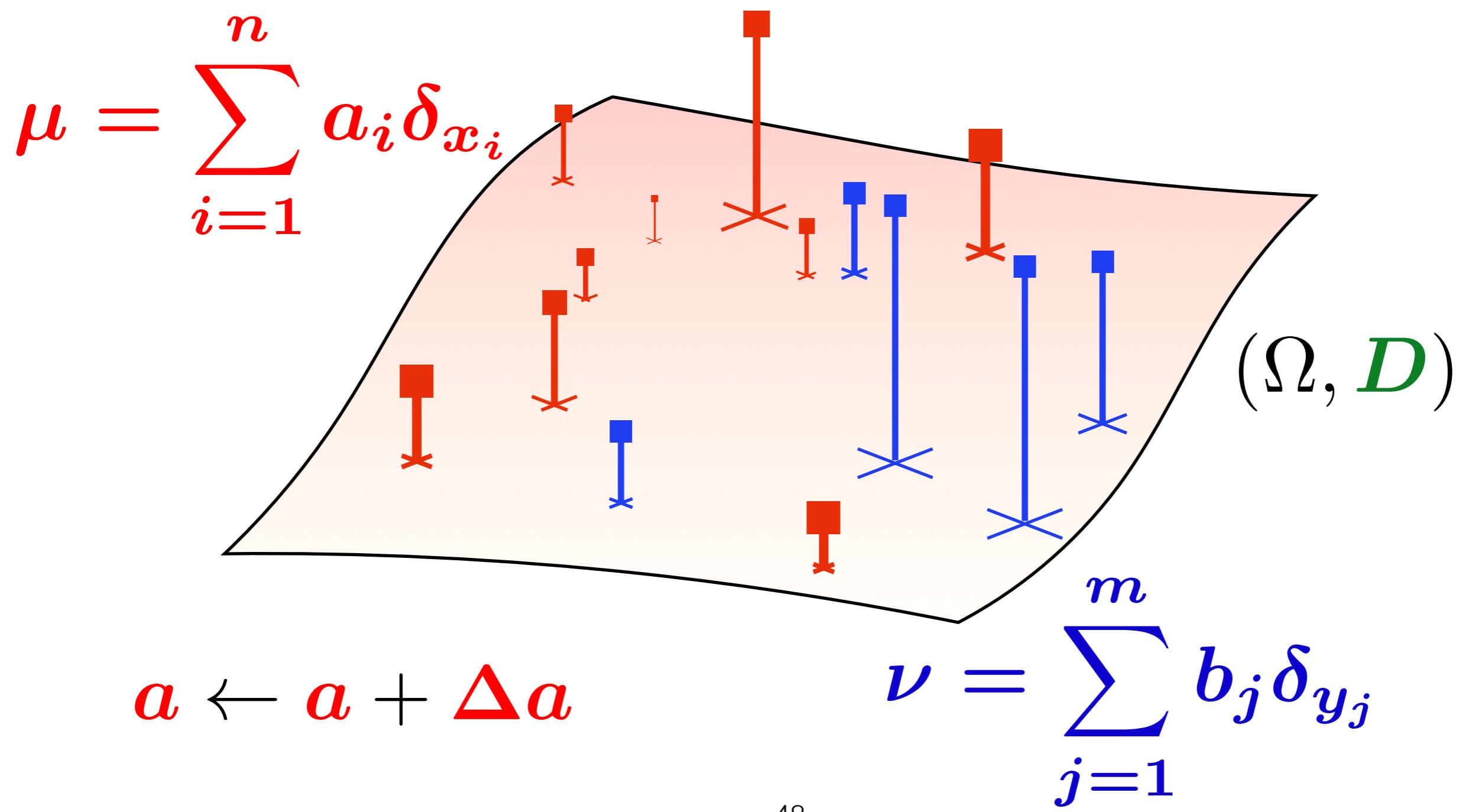
Differentiability of W

$$W((a + \Delta a, X), (b, Y)) = W((a, X), (b, Y)) + ??$$



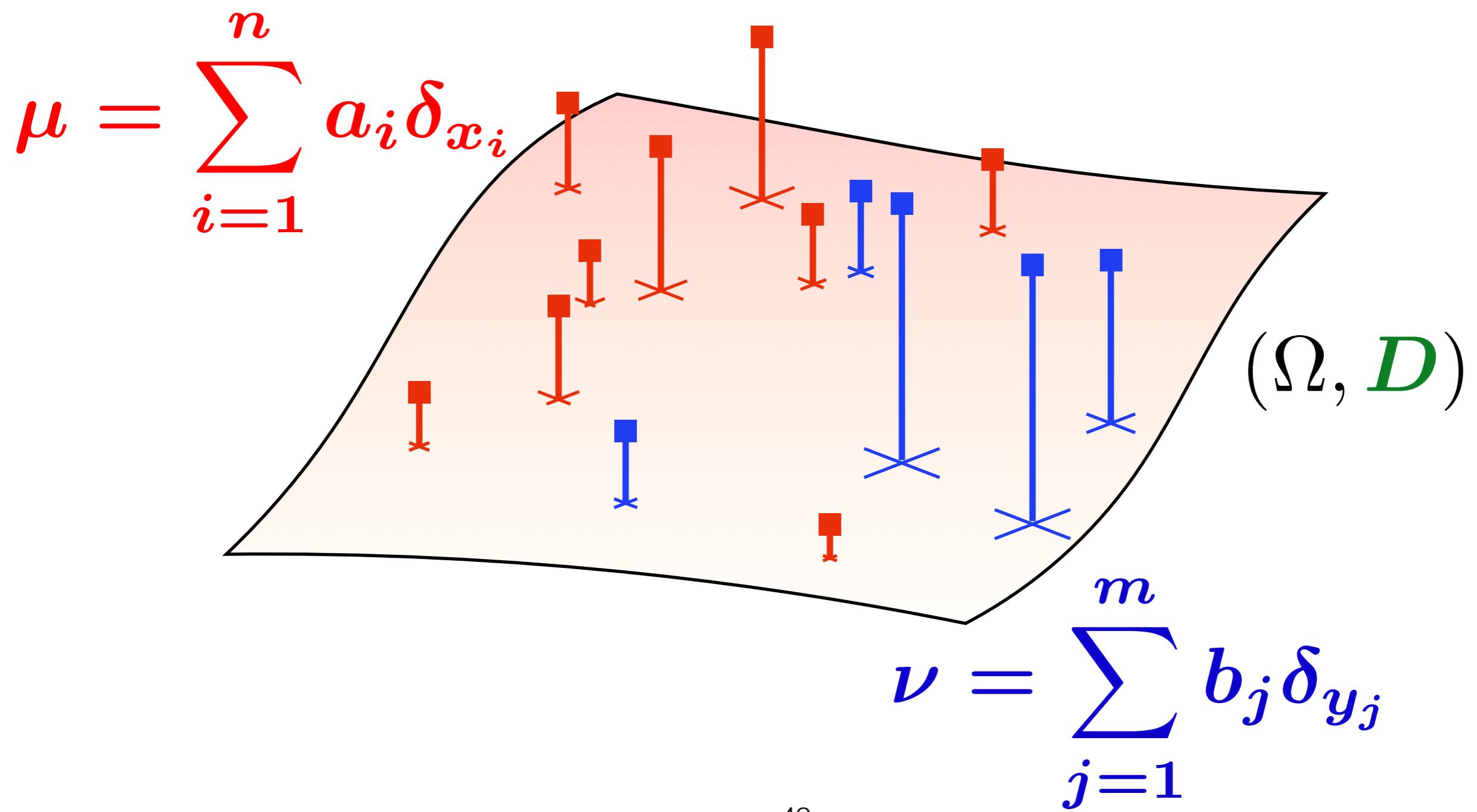
Differentiability of W

$$W((a + \Delta a, X), (b, Y)) = W((a, X), (b, Y)) + ??$$



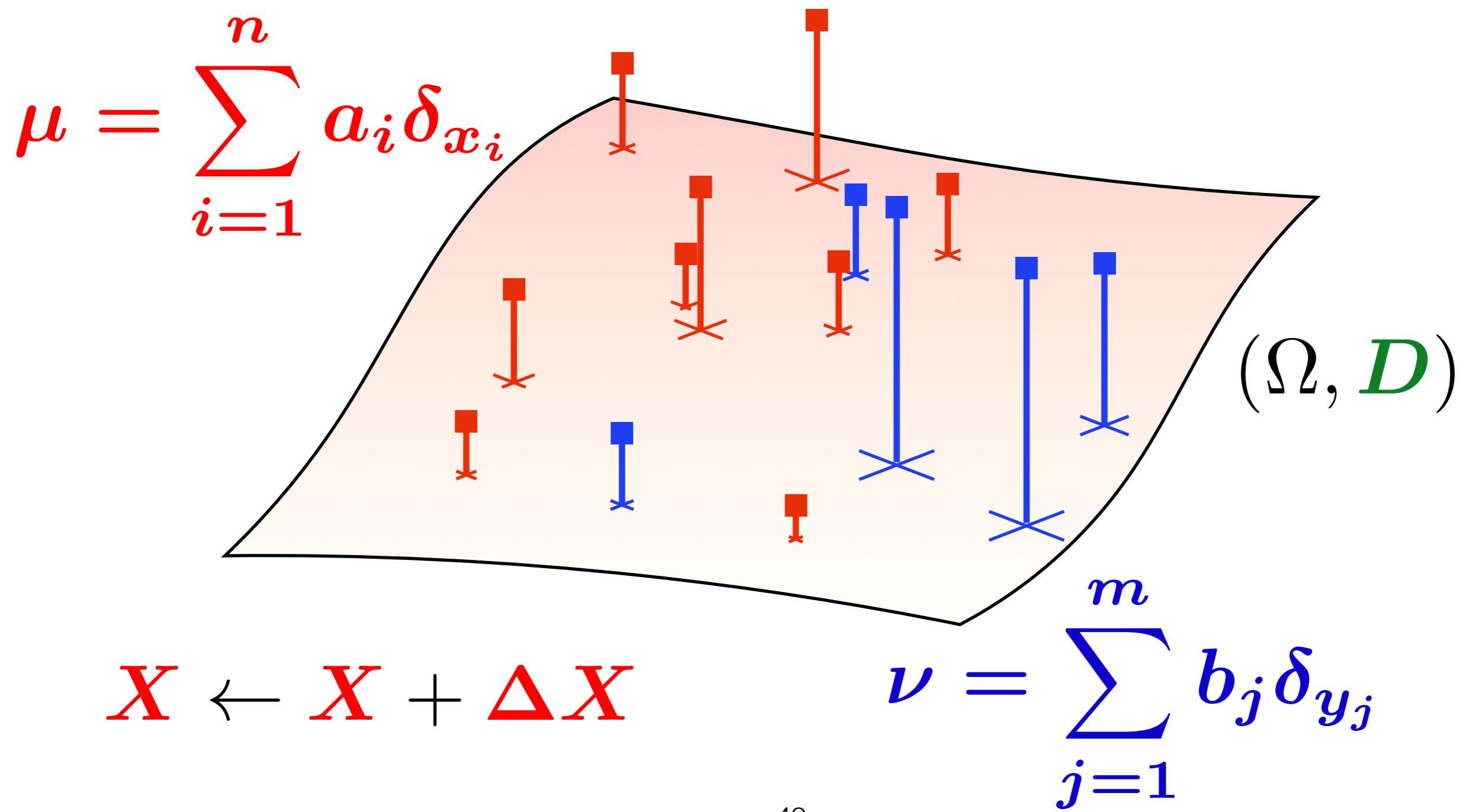
Sinkhorn \rightarrowtail Differentiability

$$W((a, X + \Delta X), (b, Y)) = W((a, X), (b, Y)) + ??$$



Sinkhorn \rightarrowtail Differentiability

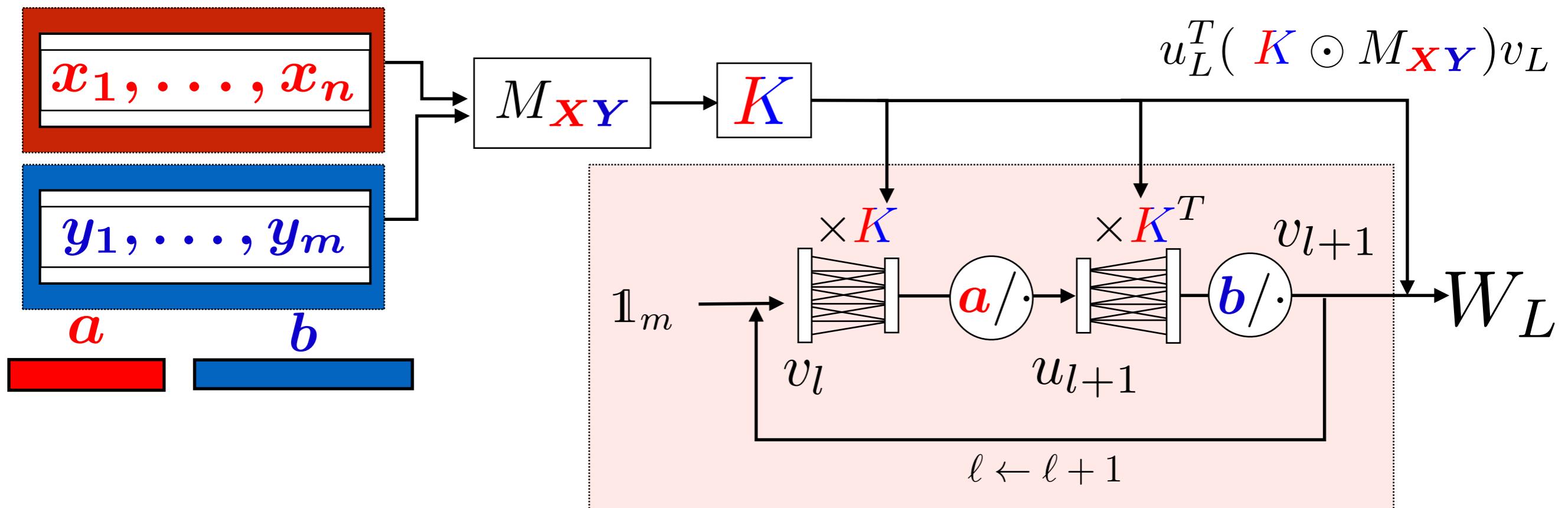
$$W((a, X + \Delta X), (b, Y)) = W((a, X), (b, Y)) + ??$$



Sinkhorn: A Programmer View

Def. For $L \geq 1$, define

$$W_L(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \langle \mathbf{P}_L, M_{\mathbf{X}\mathbf{Y}} \rangle,$$



Sinkhorn $\ell = 1, \dots, L - 1$

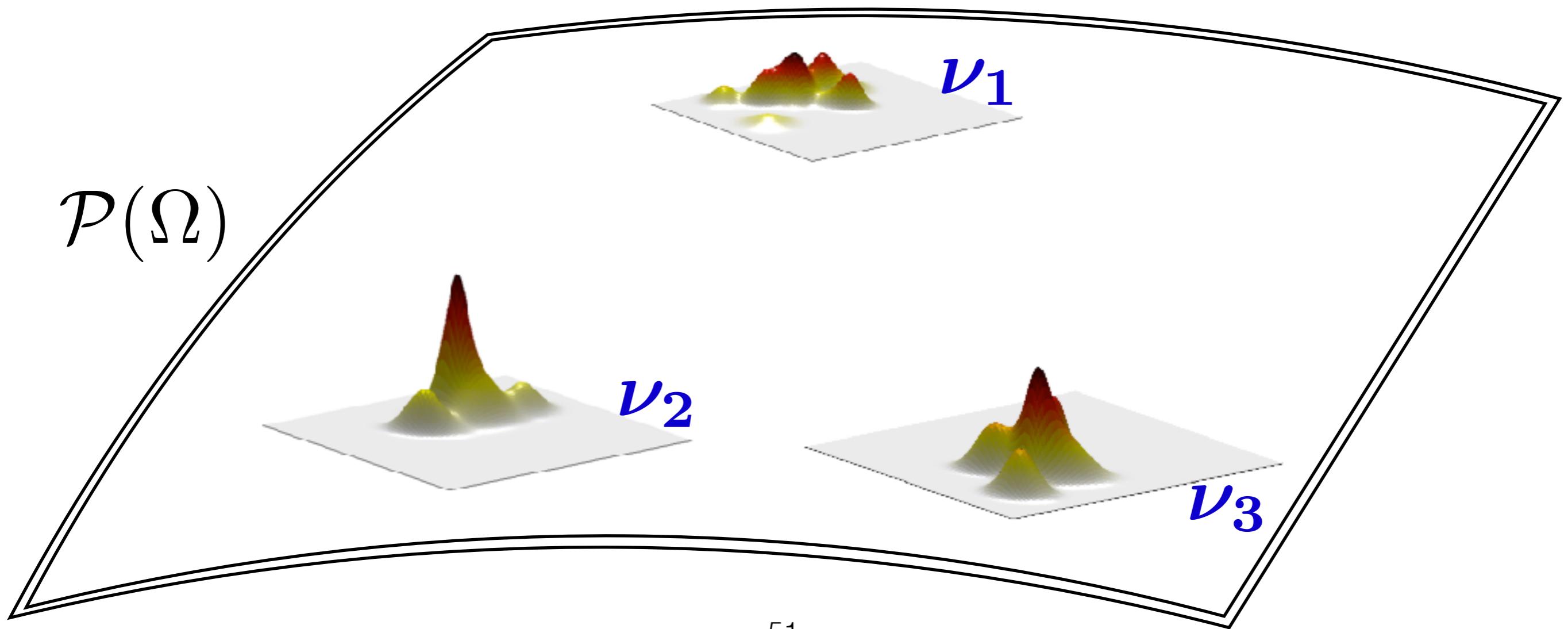
Sinkhorn: A Programmer View

Def. For $L \geq 1$, define

$$W_L(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \langle \mathbf{P}_L, M_{\mathbf{X} \mathbf{Y}} \rangle,$$

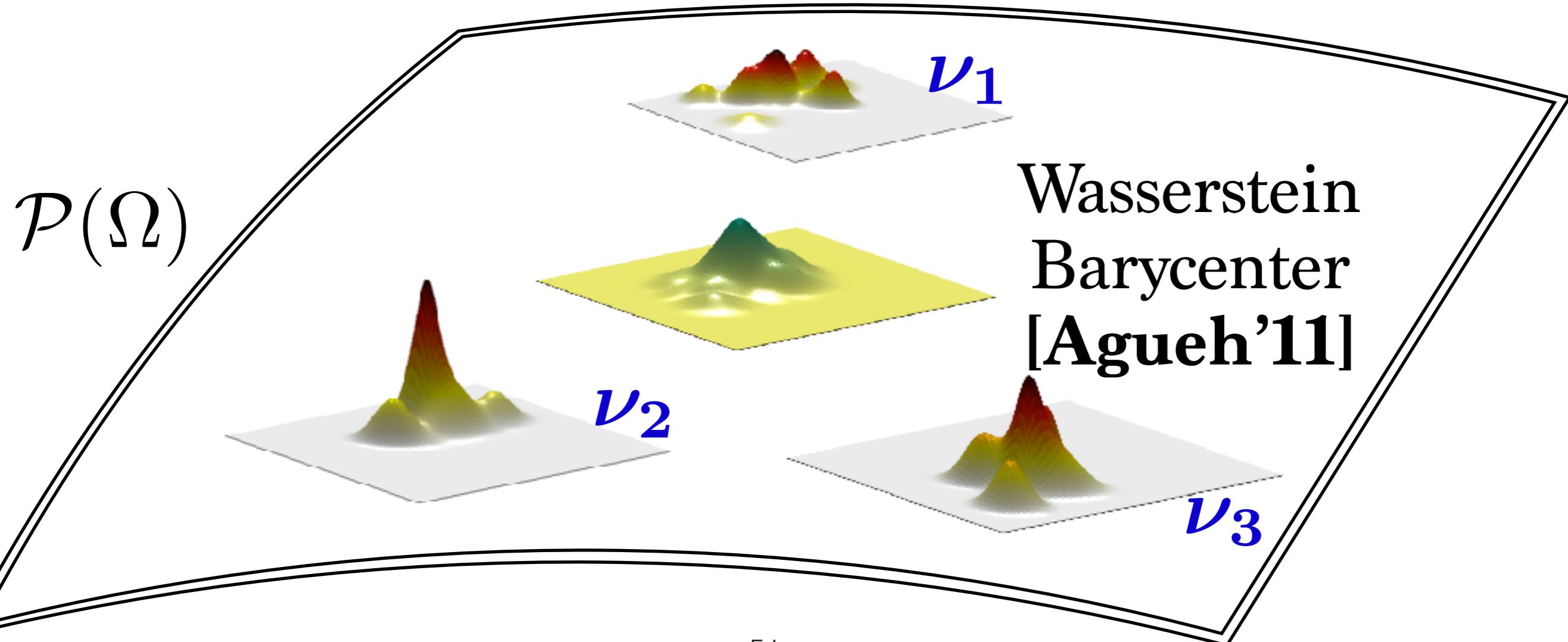
Prop. $\frac{\partial W_L}{\partial \mathbf{X}}, \frac{\partial W_L}{\partial \mathbf{a}}$ can be computed recursively, in $O(L)$ kernel $\mathbf{K} \times$ vector products.

OT: Barycenters



OT: Barycenters

$$\min_{\mu \in \mathcal{P}(\Omega)} \sum_{i=1}^N \lambda_i W_p^p(\mu, \nu_i)$$



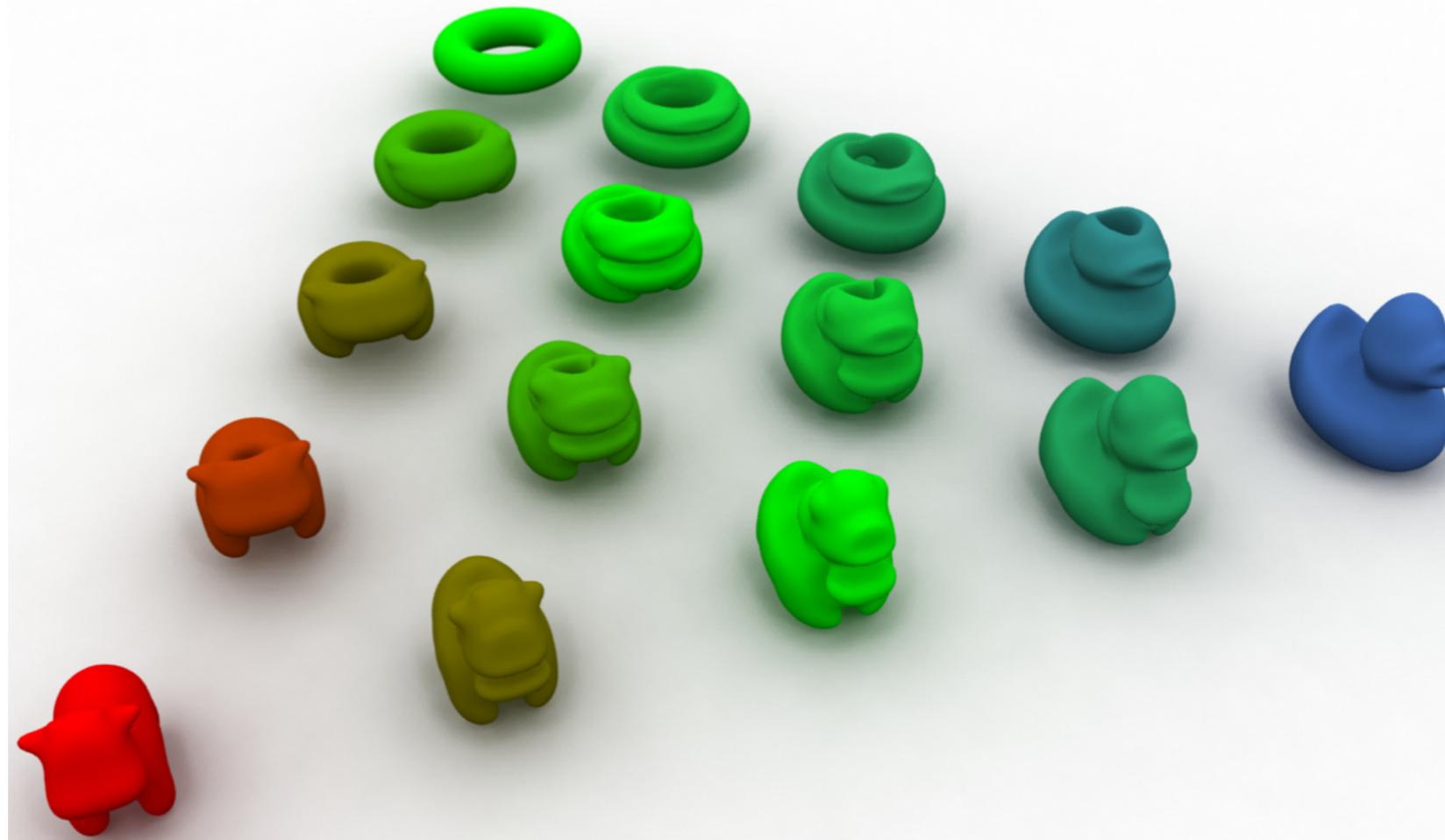
OT: Barycenters

Very different geometry than standard information divergences (KL, Euclidean)

[Solomon'15]

OT: Barycenters

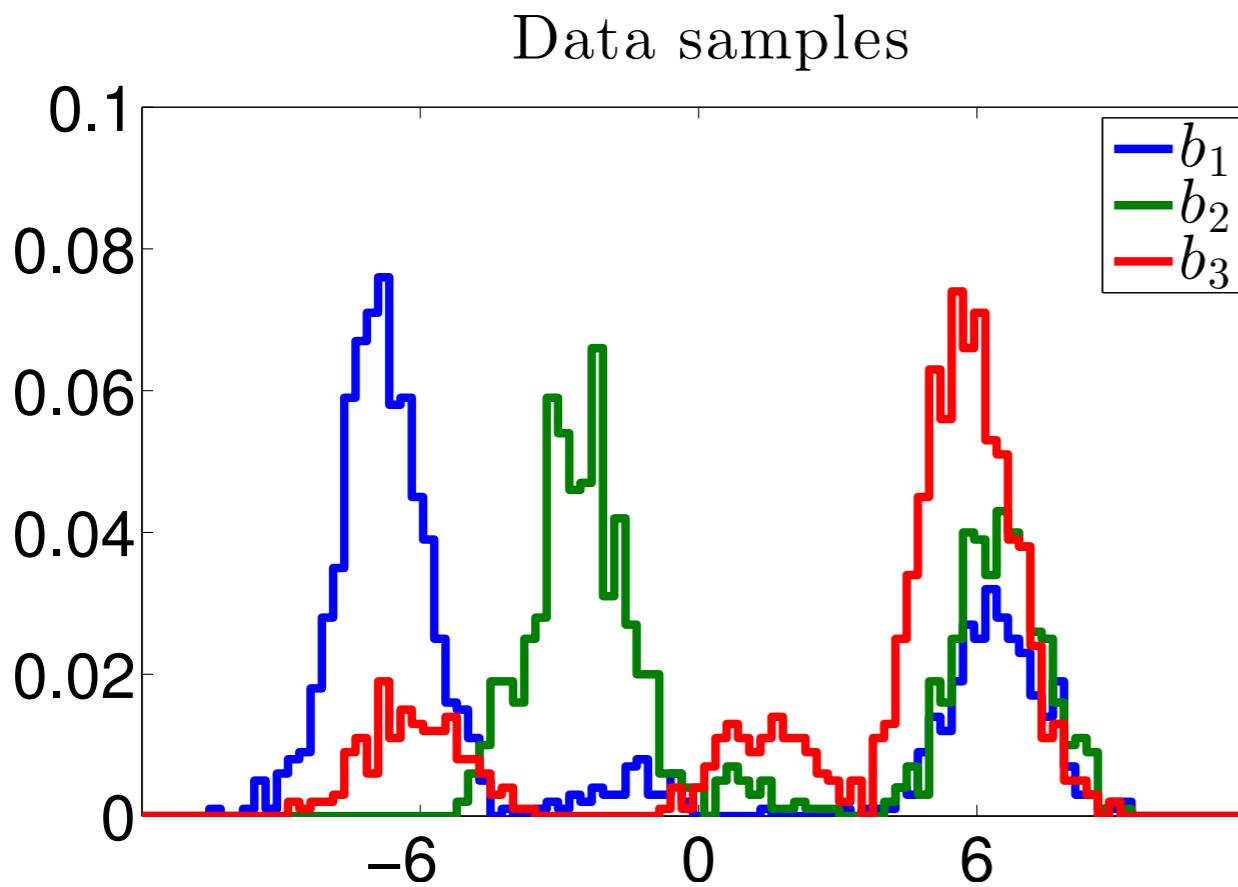
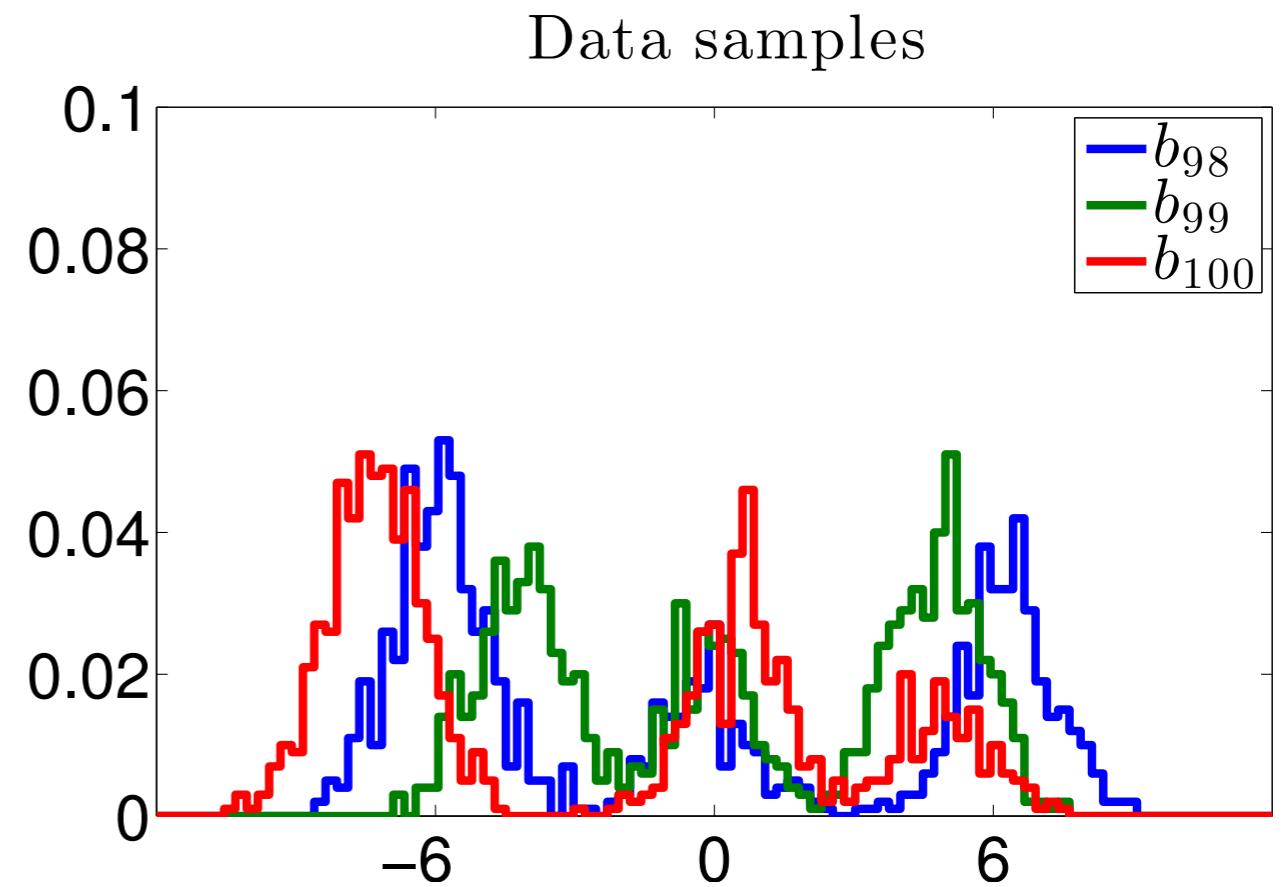
Very different geometry than standard information divergences (KL, Euclidean)



[Solomon'15]

OT: Dictionary Learning

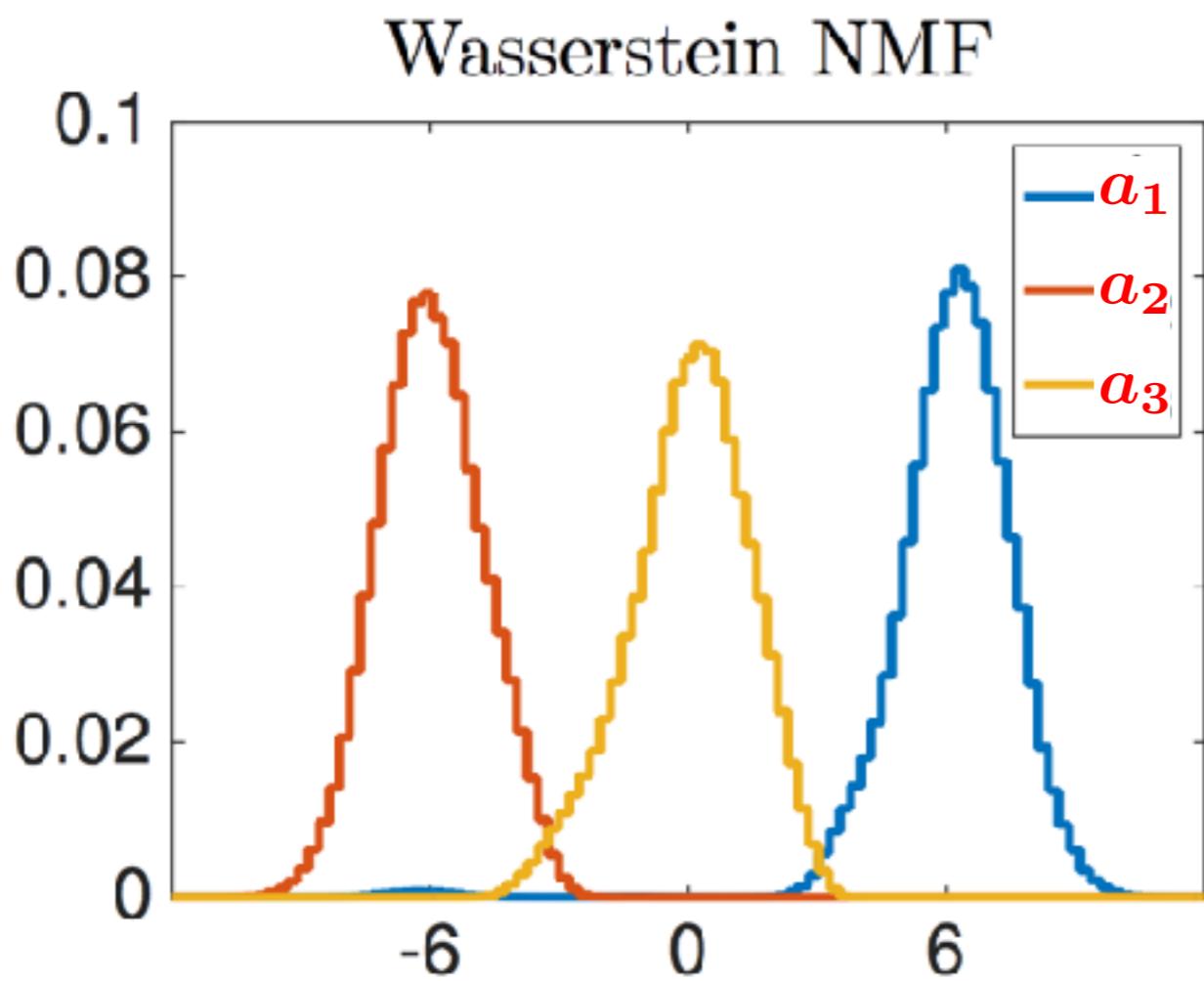
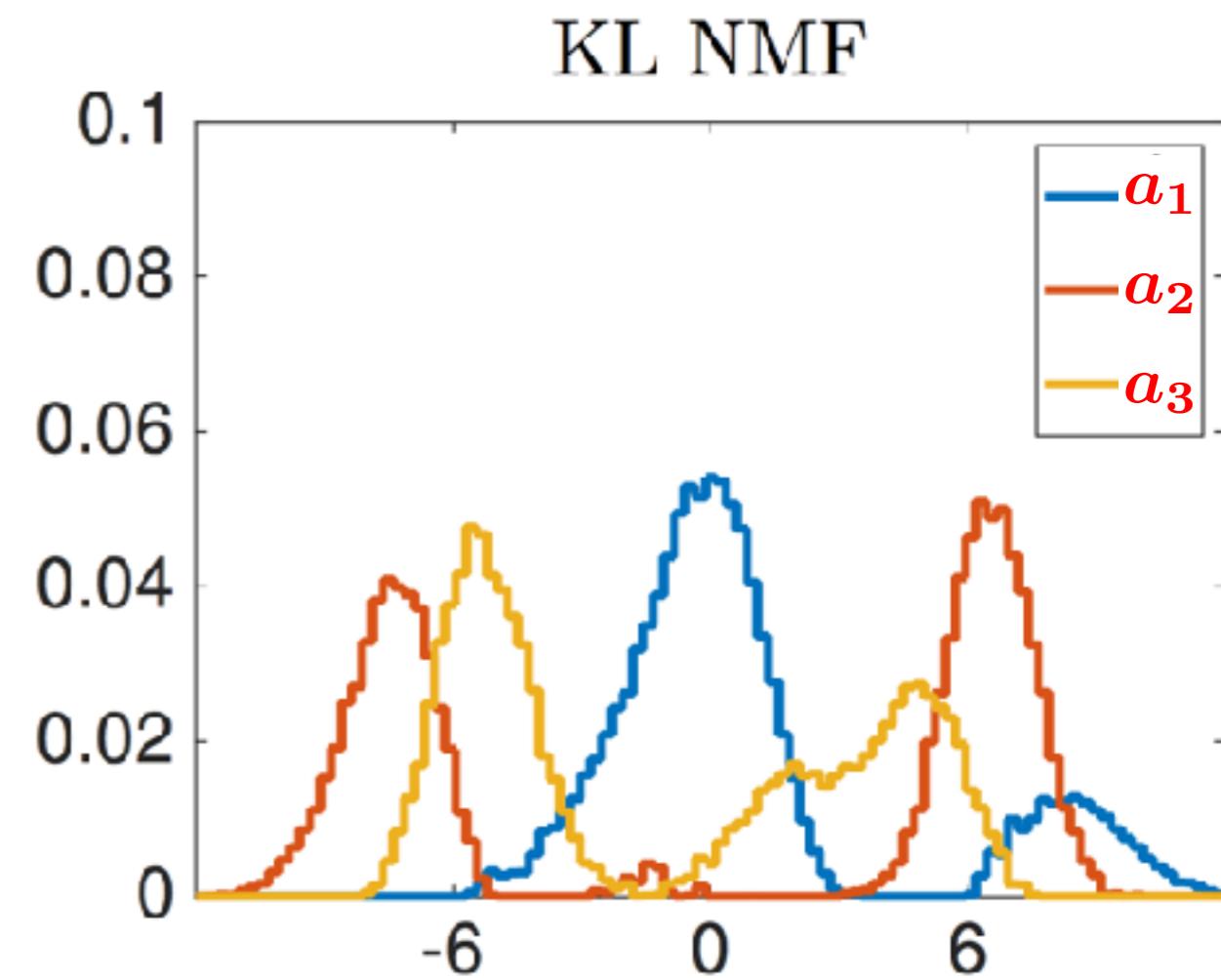
$$\min_{\mathbf{A} \in (\Sigma_n)^K, \mathbf{\Lambda} \in (\Sigma_K)^N} \sum_{i=1}^N W \left(\mathbf{b}_i, \sum_{k=1}^K \mathbf{\Lambda}_k^i \mathbf{a}_k \right)$$



[Sandler'11] [Zen'14] [Rolet'16]

OT: Dictionary Learning

$$\min_{\mathbf{A} \in (\Sigma_n)^K, \mathbf{\Lambda} \in (\Sigma_K)^N} \sum_{i=1}^N W \left(\mathbf{b}_i, \sum_{k=1}^K \mathbf{\Lambda}_k^i \mathbf{a}_k \right)$$



[Sandler'11] [Zen'14] [Rolet'16]

(Word Mover's Distance)



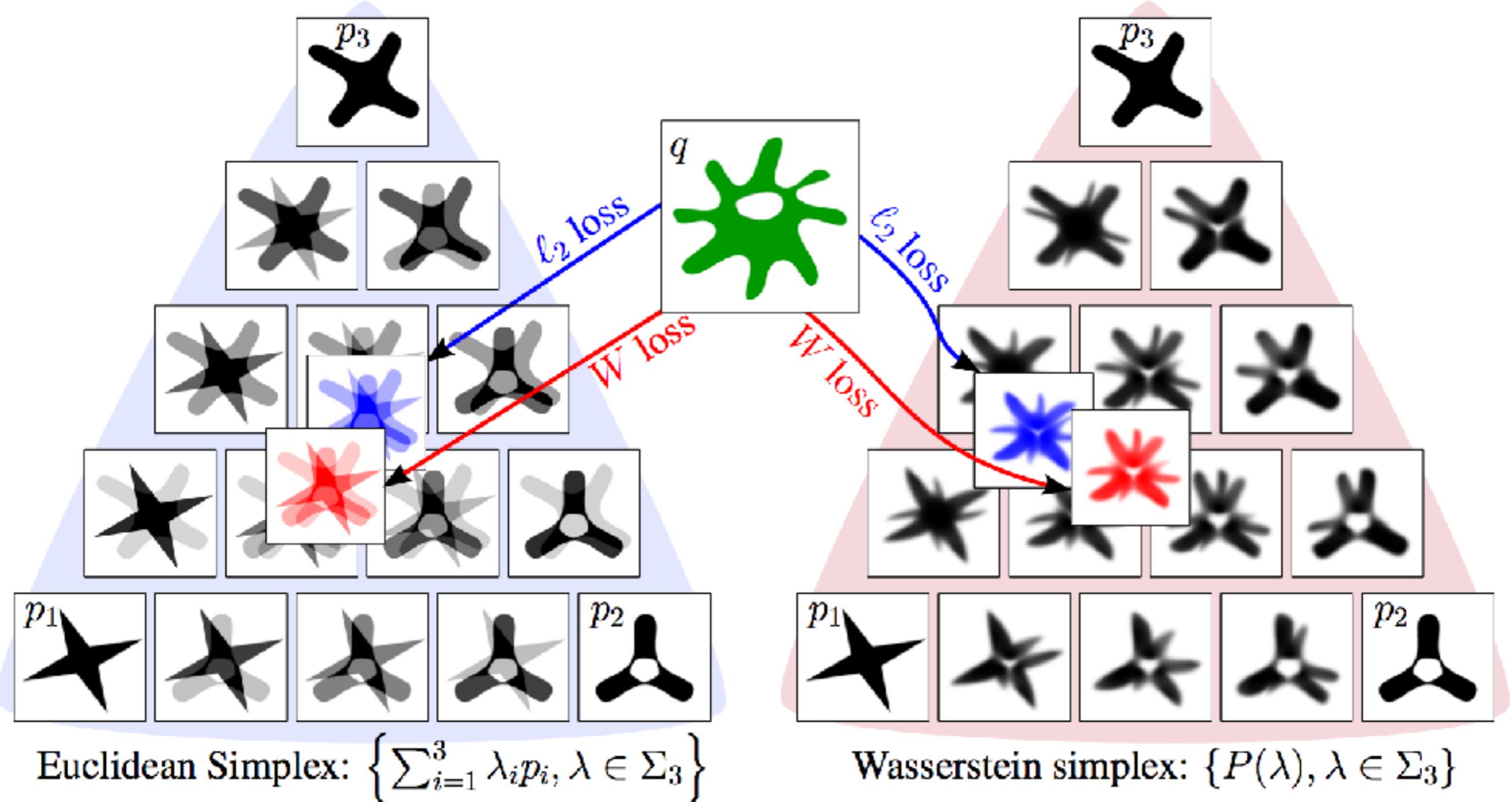
[Kusner'15]

$$\text{dist}(D_1, D_2) = W_2(\mu, \nu)$$

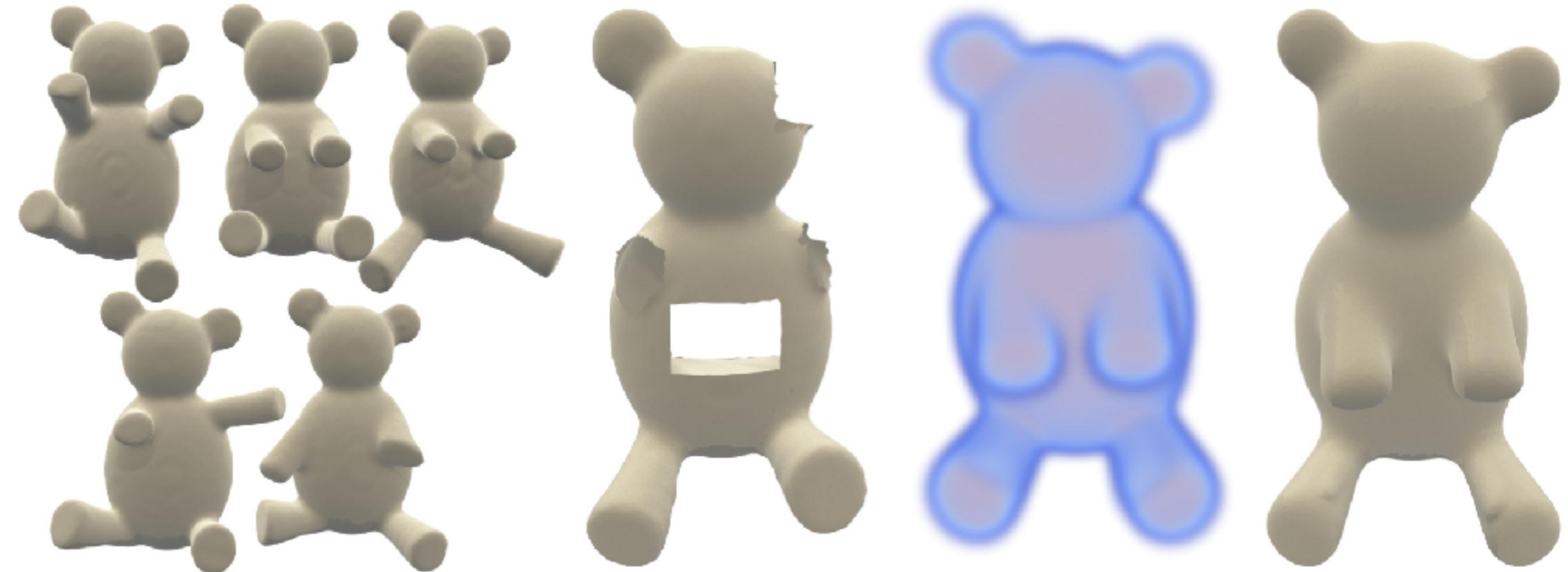
Topic Models

[Rolet'16]

Wasserstein Inverse Problems



Application: Volume Reconstruction



Shape database
 (p_1, \dots, p_5)

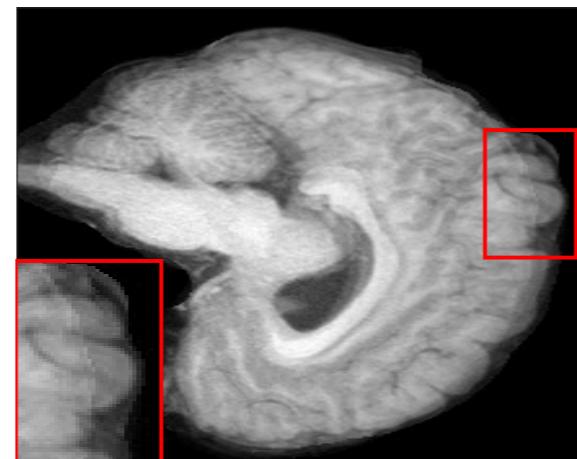
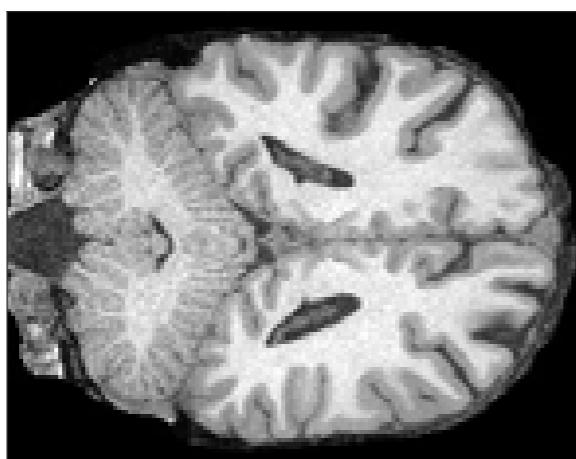
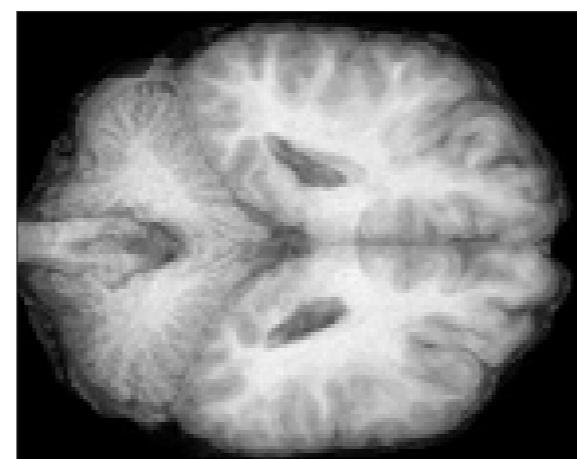
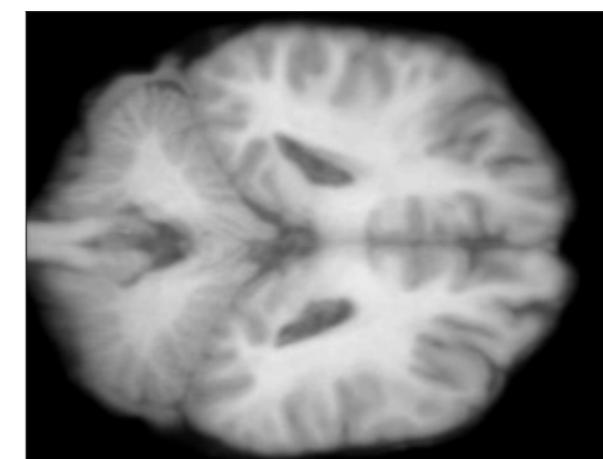
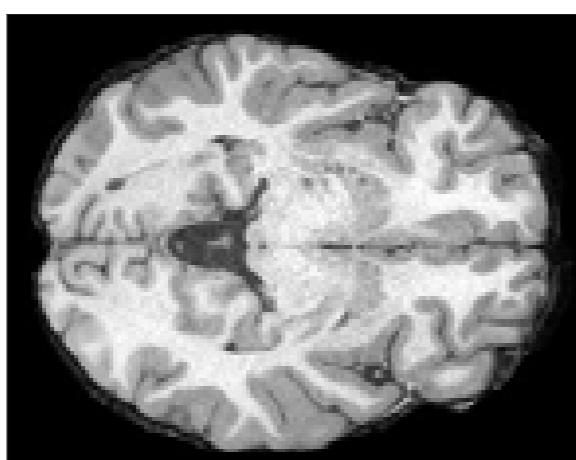
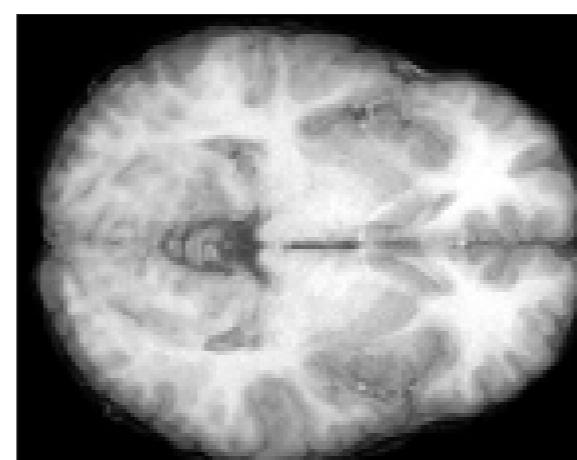
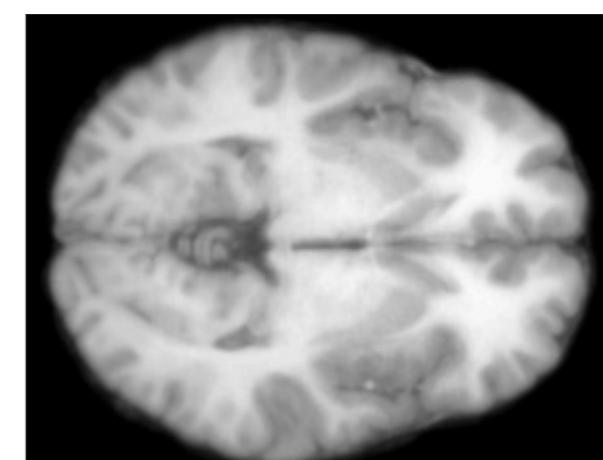
Input shape q

Projection
 $P(\lambda)$

Iso-surface

[Bonneel'16]

Application: Brain Mapping

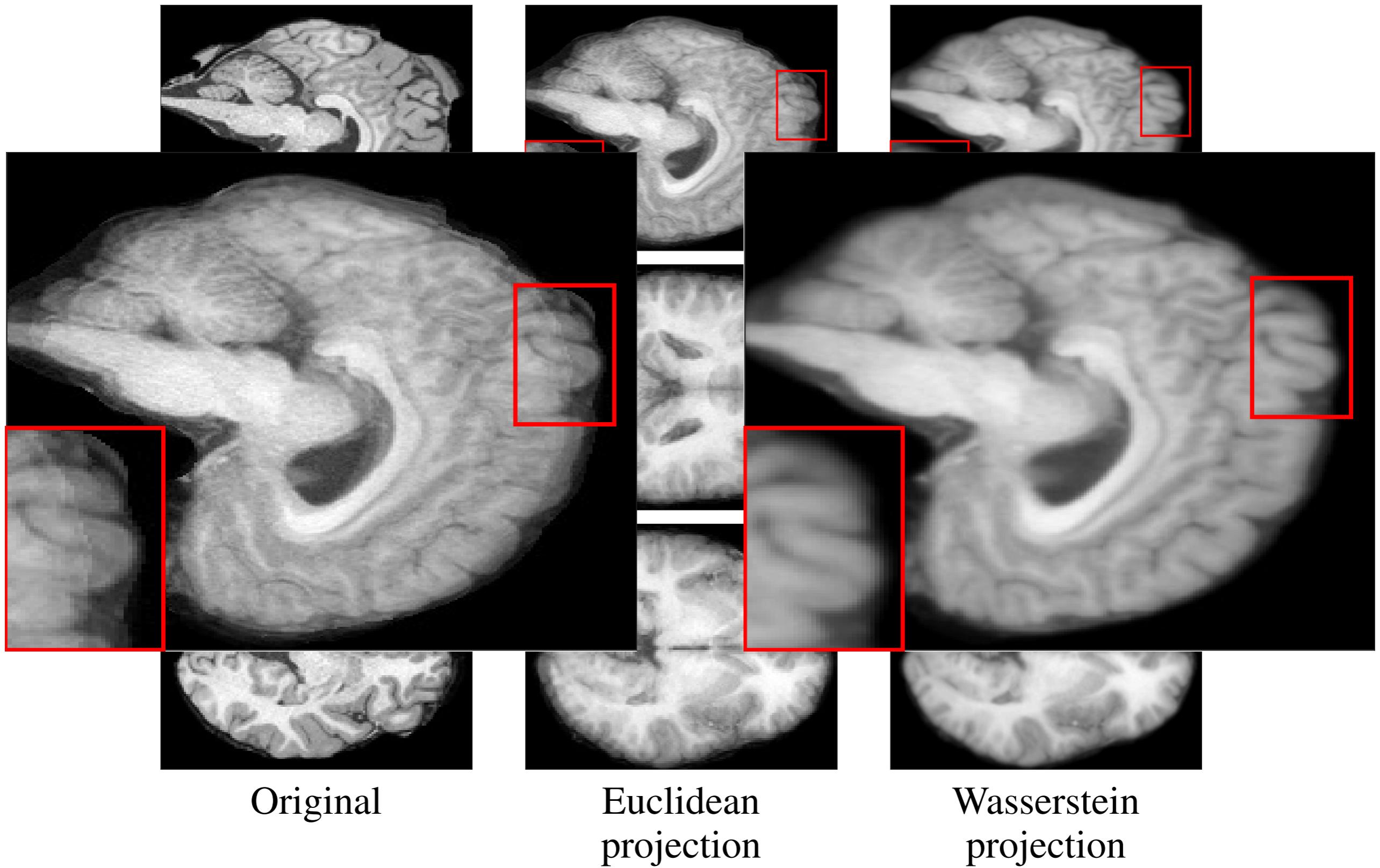


Original

Euclidean
projection

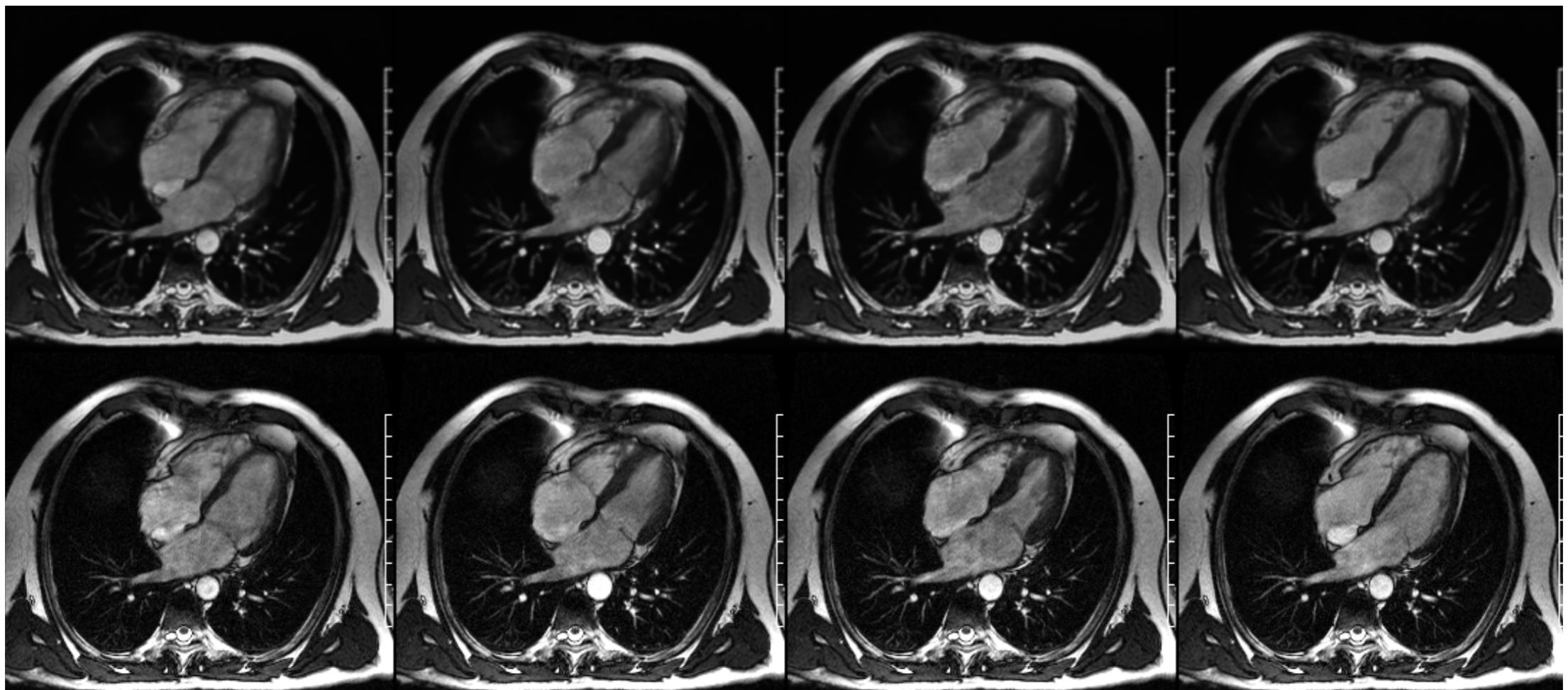
Wasserstein
projection

Application: Brain Mapping



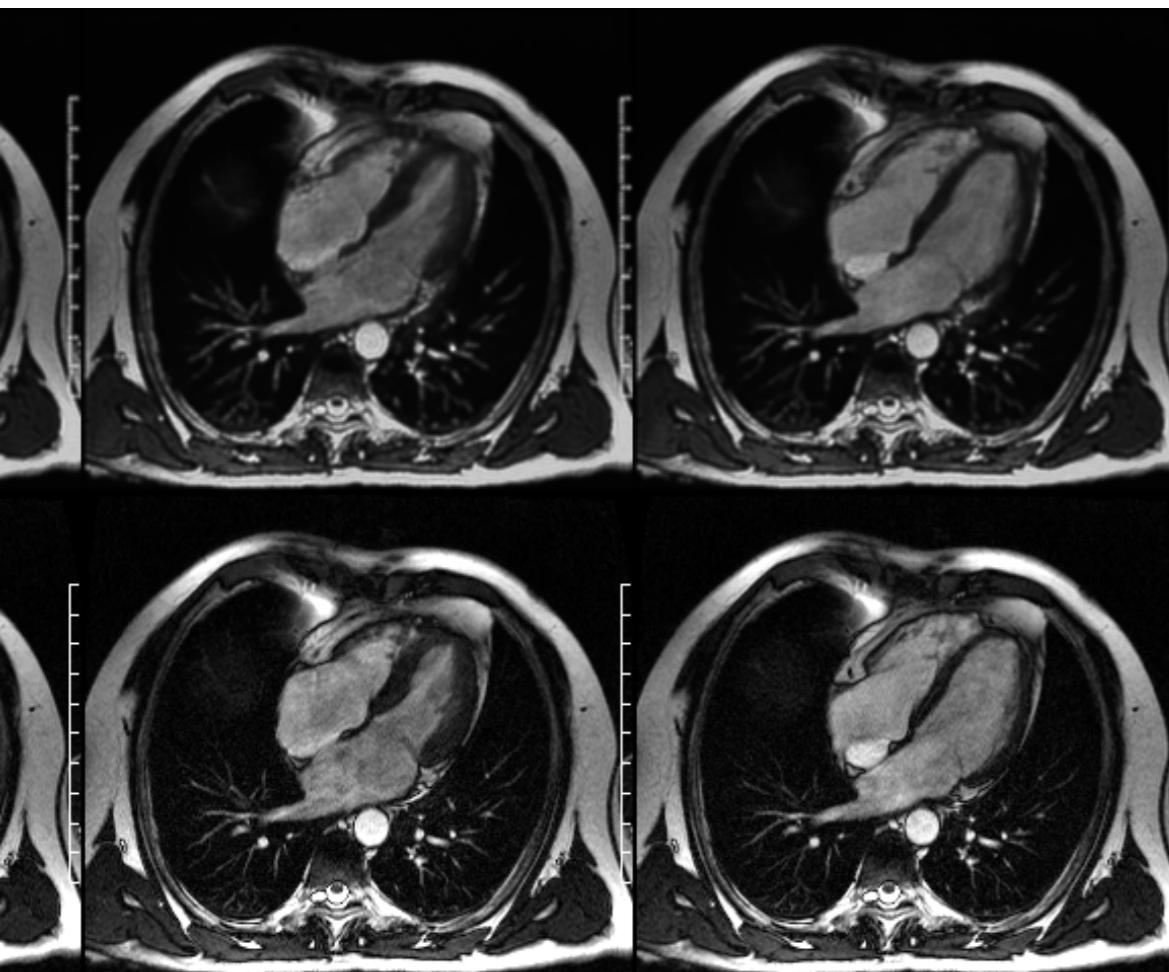
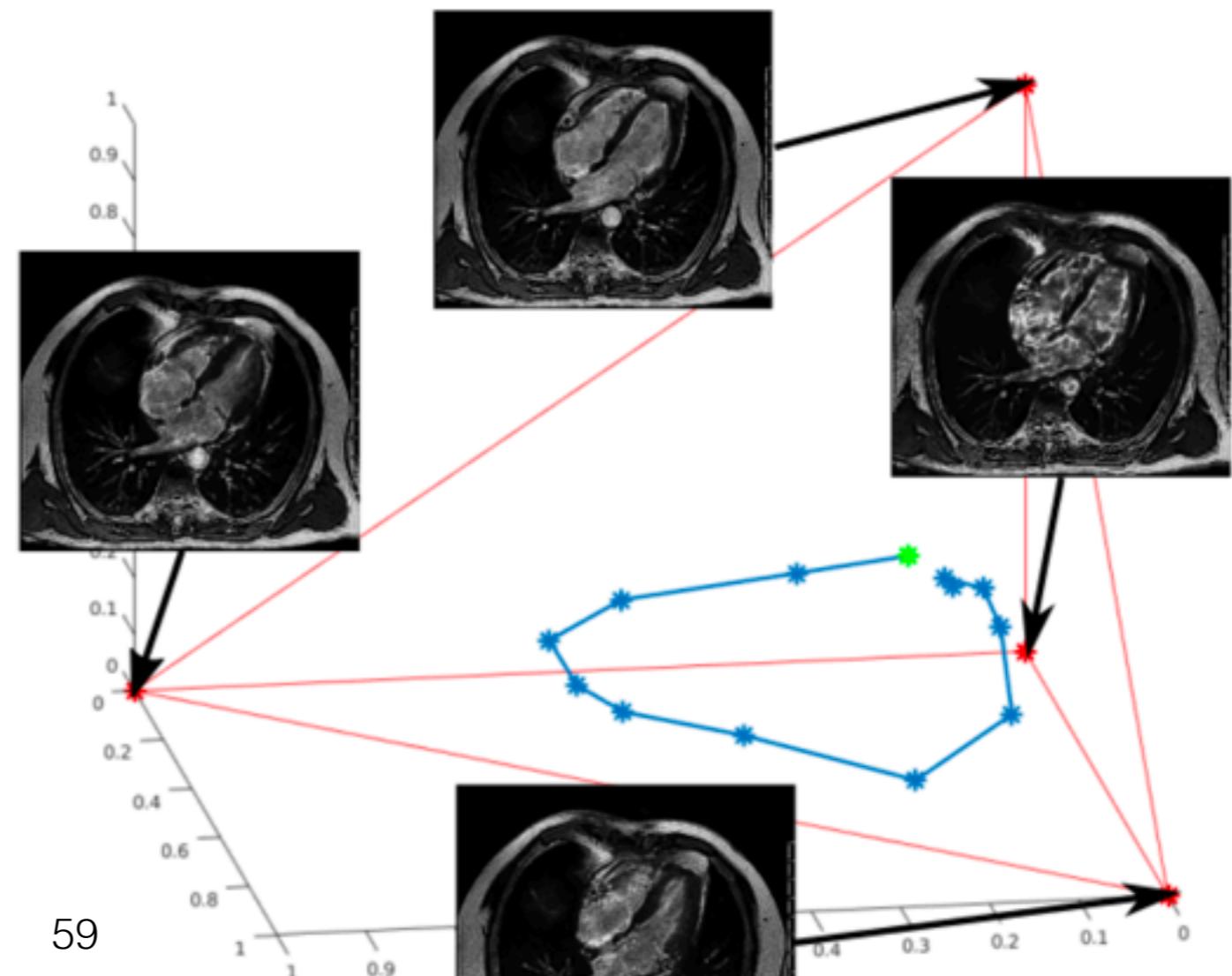
Application: W Dictionary Learning

$$\min_{\mathbf{A} \in (\Sigma_n)^K, \mathbf{\Lambda} \in (\Sigma_K)^N} \sum_{i=1}^N \mathcal{L} \left(\mathbf{b}_i, \mathcal{B}_{\mathbf{\Lambda}_k^i} (\mathbf{a}_k) \right)$$



Application: W Dictionary Learning

$$\min_{\mathbf{A} \in (\Sigma_n)^K, \mathbf{\Lambda} \in (\Sigma_K)^N} \sum_{i=1}^N \mathcal{L} \left(\mathbf{b}_i, \mathcal{B}_{\mathbf{\Lambda}_k^i} (\mathbf{a}_k) \right)$$



Learning with a Wasserstein Loss

Dataset $\{(x_i, y_i)\}$, $x_i \in \mathbb{R}^p$, $y_i \in \mathbb{R}_+^n$

x_i

husky
snow
sled
slope
men

y_i

Goal is to find $f_{\theta} : \text{Images} \mapsto \text{Labels}$

Learning with a Wasserstein Loss

$$\min_{\theta \in \Theta} \sum_{i=1}^N \mathcal{L}(f_{\theta}(x_i), y_i)$$

x_i

husky
snow
sled
slope
men

y_i

Which loss \mathcal{L} could we use?

Learning with a Wasserstein Loss

$$\min_{\theta \in \Theta} \sum_{i=1}^N \mathcal{L}(f_{\theta}(x_i), y_i)$$

dog
driver
winter
ice

$f_{\theta}(x_i)$

husky
snow
sled
slope
men

y_i

Which loss \mathcal{L} could we use?

Learning with a Wasserstein Loss

$$\min_{\theta \in \Theta} \sum_{i=1}^N \mathcal{L}(f_{\theta}(x_i), y_i)$$

$$\begin{aligned} \mathcal{L}(\mathbf{a}, \mathbf{b}) = & \min_{\mathbf{P} \in \mathbb{R}^{nm}} \langle \mathbf{P}, M \rangle + \varepsilon \text{KL}(\mathbf{P} \mathbf{1}, \mathbf{a}) \\ & + \varepsilon \text{KL}(\mathbf{P}^T \mathbf{1}, \mathbf{b}) - \gamma E(\mathbf{P}) \end{aligned}$$

1. Generalizes Word Mover's to label clouds
2. Sinkhorn algorithm can be generalized

[Frogner'15] [Chizat'15][Chizat'16]

Minimum Kantorovich Estimators

$$\min_{\theta \in \Theta} W(\nu_{\text{data}}, f_{\theta \sharp} \mu)$$

[Bassetti'06] 1st reference discussing this approach.

Challenge: $\nabla_{\theta} W(\nu_{\text{data}}, f_{\theta \sharp} \mu)$?

[Montavon'16] use regularized OT in a finite setting.

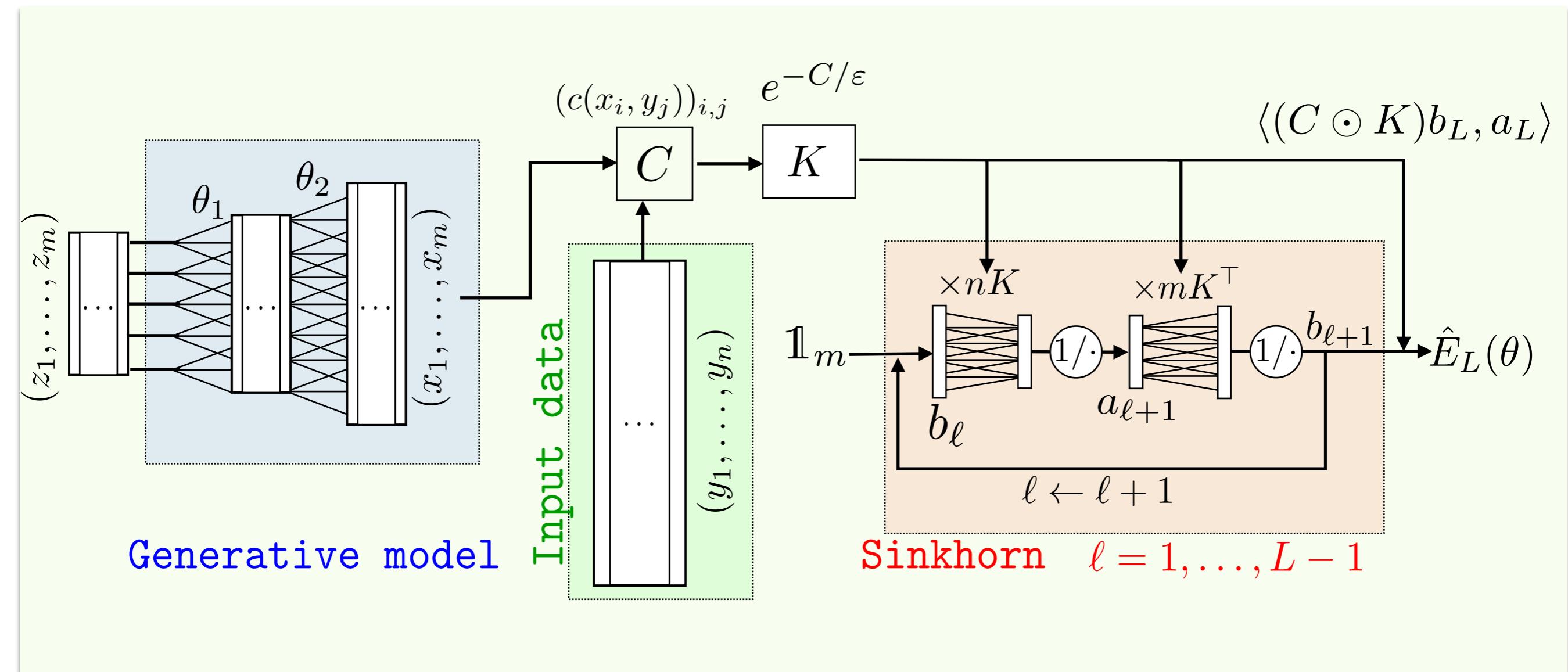
[Arjovsky'17] (WGAN) uses a NN to approximate dual solutions and recover gradient w.r.t. parameter

[Bernton'17] reject mechanism $W(\text{sample}, \text{data})$

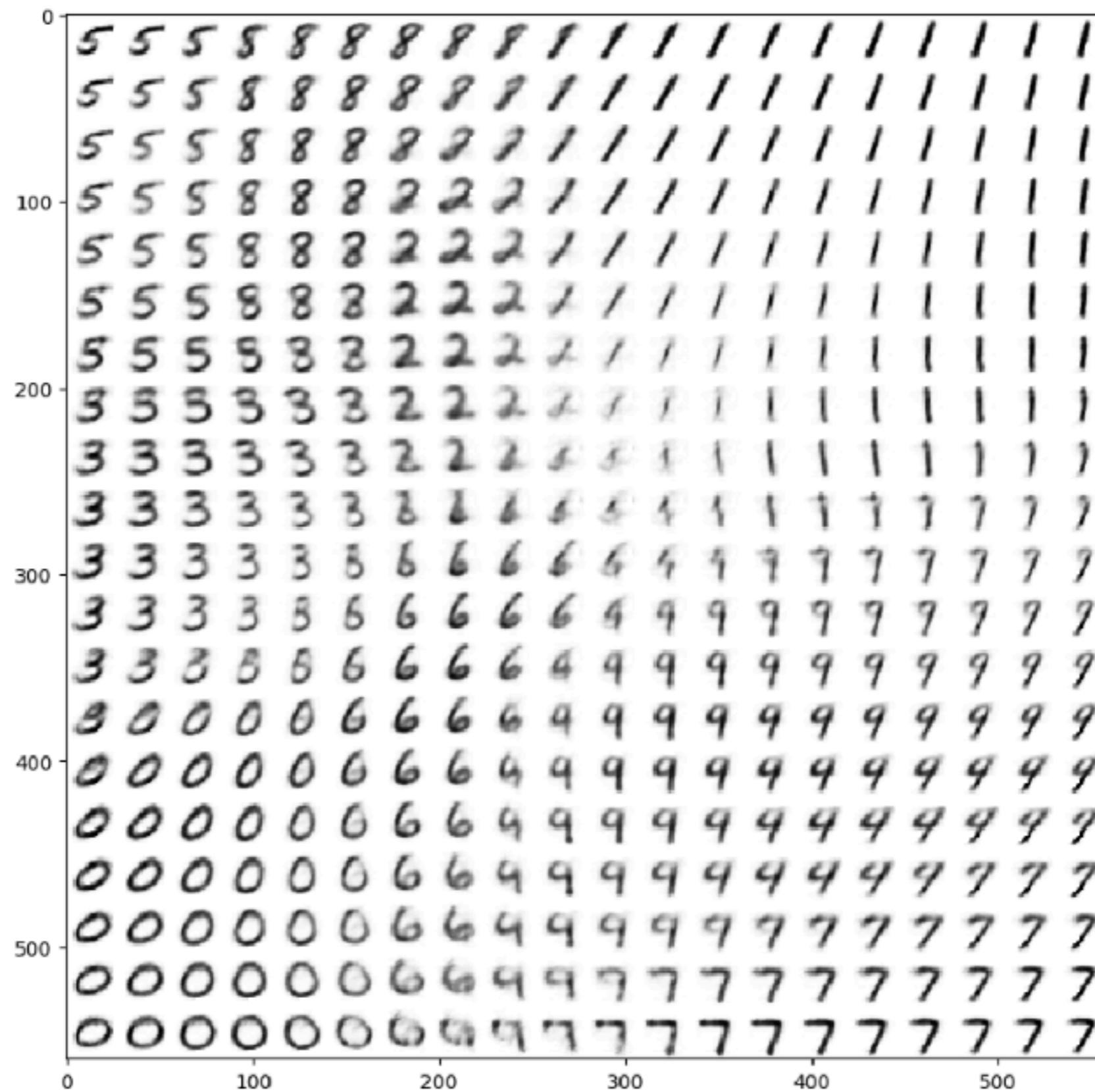
[Genevay'17, Salimans'17] (*Sinkhorn approach*)

Proposal: Autodiff OT using Sinkhorn

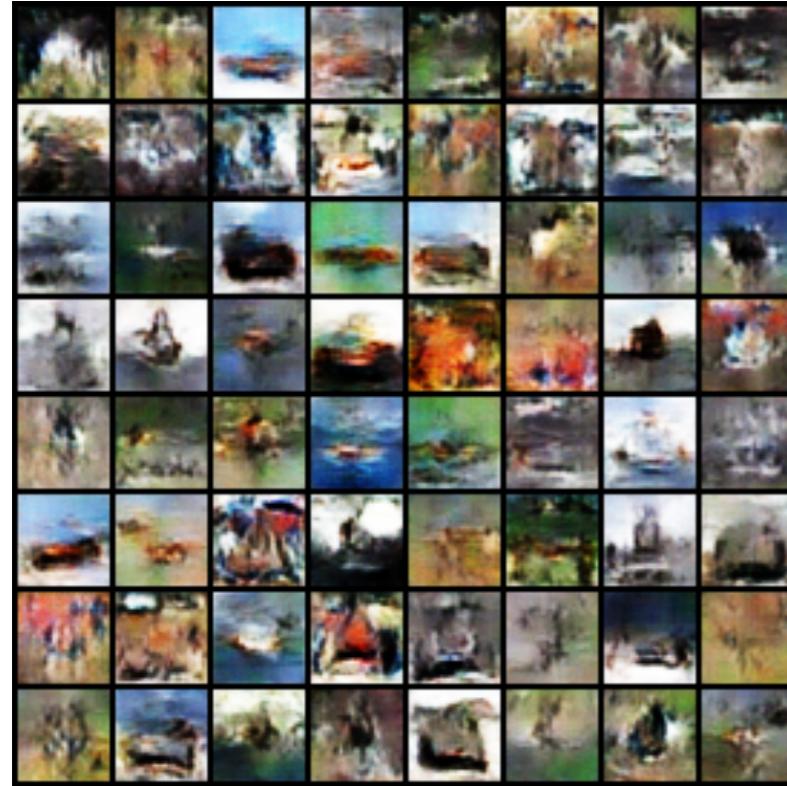
Approximate W loss by the transport cost \bar{W}_L after L Sinkhorn iterations.



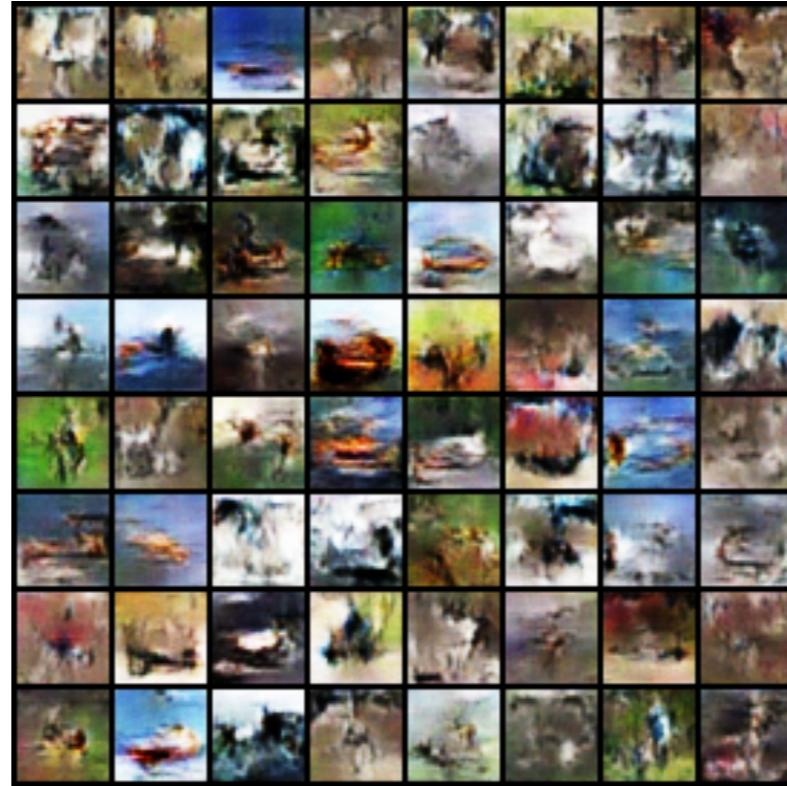
Example: MNIST, Learning f_{θ}



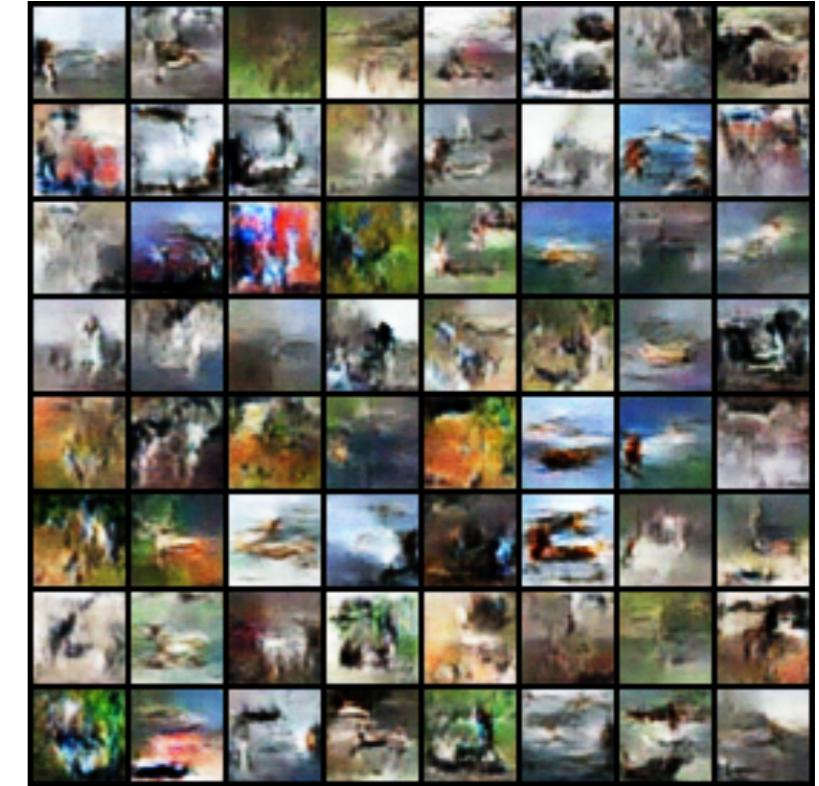
Example: Generation of Images



MMD-GAN



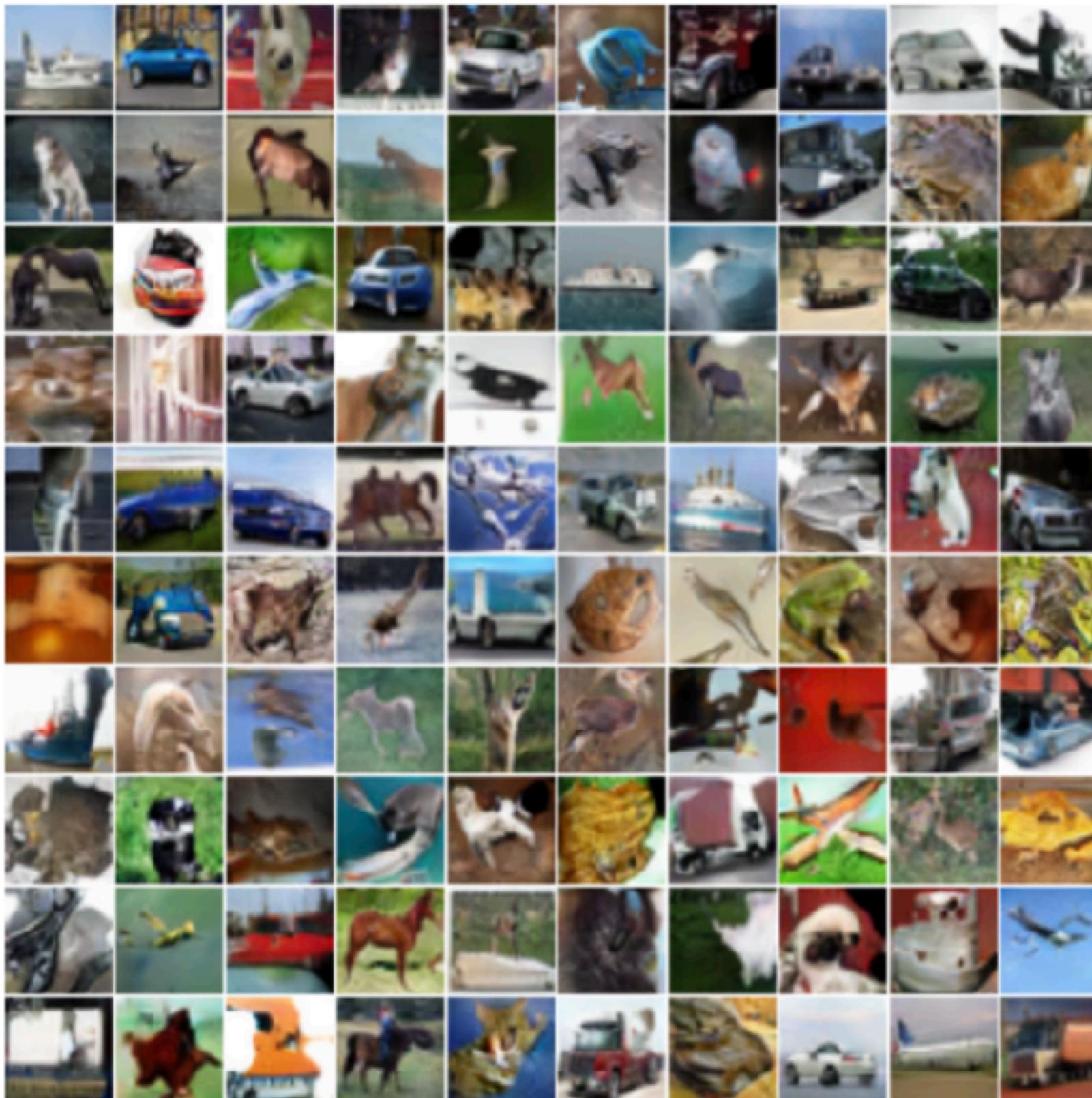
$\tau = 1000$



$\tau=10$

- Learning with CIFAR-10 images
- In these examples the cost function is also learned adversarially, as a NN mapping onto feature vectors.

Example: Generation of Images



Example: Generation of Images

Concluding Remarks

- *Regularized OT* is much faster than OT.
- *Regularized OT* can interpolate between W and the MMD / *Energy distance* metrics.
- The solution of *regularized OT* is “*auto-differentiable*”.
- **Many open problems remain!**