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Statistics 0.1 : Density Fitting
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In higher dimensional spaces…
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Generative Models
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Abstract

Generative moment matching network (GMMN) is a deep generative model that
differs from Generative Adversarial Network (GAN) by replacing the discriminator
in GAN with a two-sample test based on kernel maximum mean discrepancy
(MMD). Although some theoretical guarantees of MMD have been studied, the
empirical performance of GMMN is still not as competitive as that of GAN on
challenging and large benchmark datasets. The computational efficiency of GMMN
is also less desirable in comparison with GAN, partially due to its requirement
for a rather large batch size during the training. In this paper, we propose to
improve both the model expressiveness of GMMN and its computational efficiency
by introducing adversarial kernel learning techniques, as the replacement of a
fixed Gaussian kernel in the original GMMN. The new approach combines the key
ideas in both GMMN and GAN, hence we name it MMD-GAN. The new distance
measure in MMD-GAN is a meaningful loss that enjoys the advantage of weak⇤
topology and can be optimized via gradient descent with relatively small batch
sizes. In our evaluation on multiple benchmark datasets, including MNIST, CIFAR-
10, CelebA and LSUN, the performance of MMD-GAN significantly outperforms
GMMN, and is competitive with other representative GAN works.

1 Introduction

The essence of unsupervised learning models the underlying distribution PX of the data X . Deep
generative model [1, 2] uses deep learning to approximate the distribution of complex datasets with
promising results. However, modeling arbitrary density is a statistically challenging task [3]. In many
applications, such as caption generation [4], accurate density estimation is not even necessary since
we are only interested in sampling from the approximated distribution.

Rather than estimating the density of PX , Generative Adversarial Network (GAN) [5] starts from a
base distribution PZ over Z , such as Gaussian distribution, then trains a transformation network g

✓

such that P
✓

⇡ PX , where P
✓

is the underlying distribution of g
✓

(z) and z ⇠ PZ . During the training,
GAN-based algorithms require an auxiliary network f

�

for estimating the distance between PX
and P

✓

. Different probabilistic (pseudo) metrics have been studied [5–8] under GAN framework.

Instead of training an auxiliary network f
�

for measuring the distance between PX and P
✓

, Generative
moment matching network (GMMN) [9, 10] uses kernel maximum mean discrepancy (MMD) [11],
which is the centerpiece of nonparametric two-sample test, to determine the distribution distances.
During the training, g

✓

is trained to pass the hypothesis test (minimize MMD distance). [11] shows
even the simple Gaussian kernel enjoys the strong theoretical guarantees (Theorem 1). However, the
empirical performance of GMMN does not meet its theoretical properties. There is no promising
empirical results comparable with GAN on challenging benchmarks [12, 13]. Computationally,
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Abstract

We consider training a deep neural network to
generate samples from an unknown distribu-
tion given i.i.d. data. We frame learning as
an optimization minimizing a two-sample test
statistic—informally speaking, a good genera-
tor network produces samples that cause a two-
sample test to fail to reject the null hypothesis.
As our two-sample test statistic, we use an un-
biased estimate of the maximum mean discrep-
ancy, which is the centerpiece of the nonpara-
metric kernel two-sample test proposed by Gret-
ton et al. [2]. We compare to the adversar-
ial nets framework introduced by Goodfellow et
al. [1], in which learning is a two-player game
between a generator network and an adversarial
discriminator network, both trained to outwit the
other. From this perspective, the MMD statistic
plays the role of the discriminator. In addition to
empirical comparisons, we prove bounds on the
generalization error incurred by optimizing the
empirical MMD.

1 INTRODUCTION

In this paper, we consider the problem of learning gener-
ative models from i.i.d. data with unknown distribution P .
We formulate the learning problem as one of finding a func-
tion G, called the generator, such that, given an input Z

drawn from some fixed noise distribution N , the distribu-
tion of the output G(Z) is close to the data’s distribution
P . Note that, given G and N , we can easily generate new
samples despite not having an explicit representation for
the underlying density.

We are particularly interested in the case where the gener-
ator is a deep neural network whose parameters we must
learn. Rather than being used to classify or predict, these
networks transport input randomness to output random-

ness, thus inducing a distribution. The first direct in-
stantiation of this idea is due to MacKay [7], although
MacKay draws connections even further back to the work
of Saund [11] and others on autoencoders, suggesting that
generators can be understood as decoders. MacKay’s pro-
posal, called density networks, uses multi-layer perceptrons
(MLP) as generators and learns the parameters by approxi-
mating Bayesian inference.

Since MacKay’s proposal, there has been a great deal of
progress on learning generative models, especially over
high-dimensional spaces like images. Some of the most
successful approaches have been based on restricted Boltz-
mann machines [10] and deep Boltzmann networks [3]. A
recent example is the Neural Autoregressive Density Esti-
mator due to Uria, Murray, and Larochelle [15]. An indepth
survey, however, is beyond the scope of this article.

This work builds on a proposal due to Goodfellow et al.
[1]. Their adversarial nets framework takes an indirect
approach to learning deep generative neural networks: a
discriminator network is trained to recognize the differ-
ence between training data and generated samples, while
the generator is trained to confuse the discriminator. The
resulting two-player game is cast as a minimax optimiza-
tion of a differentiable objective and solved greedily by it-
eratively performing gradient descent steps to improve the
generator and then the discriminator.

Given the greedy nature of the algorithm, Goodfellow et
al. [1] give a careful prescription for balancing the training
of the generator and the discriminator. In particular, two
gradient steps on the discriminator’s parameters are taken
for every iteration of the generator’s parameters. It is not
clear at this point how sensitive this balance is as the data
set and network vary. In this paper, we describe an approx-
imation to adversarial learning that replaces the adversary
with a closed-form nonparametric two-sample test statistic
based on the Maximum Mean Discrepancy (MMD), which
we adopted from the kernel two sample test [2]. We call our
proposal MMD nets.1 We give bounds on the estimation

1In independent work reported in a recent preprint, Li, Swer-
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1 Introduction

The problem this paper is concerned with is that of unsupervised learning. Mainly,
what does it mean to learn a probability distribution? The classical answer to this
is to learn a probability density. This is often done by defining a parametric family
of densities (P✓)✓2Rd and finding the one that maximized the likelihood on our data:
if we have real data examples {x(i)}mi=1, we would solve the problem

max
✓2Rd

1

m

mX

i=1

logP✓(x
(i))

If the real data distribution Pr admits a density and P✓ is the distribution of the
parametrized density P✓, then, asymptotically, this amounts to minimizing the
Kullback-Leibler divergence KL(PrkP✓).

For this to make sense, we need the model density P✓ to exist. This is not
the case in the rather common situation where we are dealing with distributions
supported by low dimensional manifolds. It is then unlikely that the model manifold
and the true distribution’s support have a non-negligible intersection (see [1]), and
this means that the KL distance is not defined (or simply infinite).

The typical remedy is to add a noise term to the model distribution. This is why
virtually all generative models described in the classical machine learning literature
include a noise component. In the simplest case, one assumes a Gaussian noise
with relatively high bandwidth in order to cover all the examples. It is well known,
for instance, that in the case of image generation models, this noise degrades the
quality of the samples and makes them blurry. For example, we can see in the
recent paper [23] that the optimal standard deviation of the noise added to the
model when maximizing likelihood is around 0.1 to each pixel in a generated image,
when the pixels were already normalized to be in the range [0, 1]. This is a very
high amount of noise, so much that when papers report the samples of their models,
they don’t add the noise term on which they report likelihood numbers. In other
words, the added noise term is clearly incorrect for the problem, but is needed to
make the maximum likelihood approach work.

1
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Abstract

Boltzmann machines are able to learn highly complex, multimodal, structured
and multiscale real-world data distributions. Parameters of the model are usually
learned by minimizing the Kullback-Leibler (KL) divergence from training samples
to the learned model. We propose in this work a novel approach for Boltzmann
machine training which assumes that a meaningful metric between observations is
known. This metric between observations can then be used to define the Wasserstein
distance between the distribution induced by the Boltzmann machine on the one
hand, and that given by the training sample on the other hand. We derive a
gradient of that distance with respect to the model parameters. Minimization of this
new objective leads to generative models with different statistical properties. We
demonstrate their practical potential on data completion and denoising, for which
the metric between observations plays a crucial role.

1 Introduction

Boltzmann machines [1] are powerful generative models that can be used to approximate a large
class of real-world data distributions, such as handwritten characters [9], speech segments [7], or
multimodal data [16]. Boltzmann machines share similarities with neural networks in their capability
to extract features at multiple scales, and to build well-generalizing hierarchical data representations
[15, 13]. The restricted Boltzmann machine (RBM) is a special type of Boltzmann machine composed
of one layer of latent variables, and defining a probability distribution p✓(x) over a set of d binary
observed variables whose state is represented by the binary vector x 2 {0, 1}d, and with a parameter
vector ✓ to be learned.

Given an empirical probability distribution p̂(x) = 1
N

PN
n=1 �xn where (xn)n is a list of N observa-

tions in {0, 1}d, an RBM can be trained using information-theoretic divergences (see for example
[12]) by minimizing with respect to ✓ a divergence �(p̂, p✓) between the sample empirical measure p̂
and the modeled distribution p✓. When � is for instance the KL divergence, this approach results in
the well-known Maximum Likelihood Estimator (MLE), which yields gradients for the ✓ of the form

r✓KL(p̂ k p✓) = � 1

N

NX

n=1

r✓ log p✓(xn) = �⌦r✓ log p✓(x)
↵
p̂
, (1)

where the bracket notation h·ip indicates an expectation with respect to p. Alternative choices for �
are the Bhattacharrya/Hellinger and Euclidean distances between distributions, or more generally

⇤Also with the Department of Brain and Cognitive Engineering, Korea University.

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Inference in generative models using the Wasserstein distance

Espen Bernton, Mathieu Gerber, Pierre E. Jacob, Christian P. Robert

December 2016

Abstract

In purely generative models, one can simulate data given parameters but not necessarily evaluate the
likelihood. We use Wasserstein distances between empirical distributions of observed data and empirical
distributions of synthetic data drawn from such models to estimate their parameters. Previous interest
in the Wasserstein distance for statistical inference has been mainly theoretical, due to computational
limitations. Thanks to recent advances in numerical transport, the computation of these distances
has become feasible, up to controllable approximation errors. We leverage these advances to propose
point estimators and quasi-Bayesian distributions for parameter inference, first for independent data.
For dependent data, we extend the approach by using delay reconstruction techniques. We provide a
theoretical study of the proposed estimators, and adaptive Monte Carlo algorithms to approximate them.
The approach is illustrated on three examples: a quantile g-and-k distribution, a toggle switch model
from systems biology, and a Lotka-Volterra model for plankton population sizes.

1 Introduction
The likelihood function plays a central role in statistics, and arguably provides all the relevant information
for inference (Berger et al., 1988). However, for many models of interest, the likelihood cannot be evaluated,
often because it involves an intractable integral over latent variables. It might be possible to generate
synthetic data sets given parameters, in which case the model is said to be generative. This article is about
statistical inference for generative models.

Various approaches exist to perform inference for generative models. A popular approach consists in
replacing the likelihood by an approximation and aiming for either point estimators (Diggle and Gratton,
1984; Wood, 2010), or quasi-posterior distributions, leading to Approximate Bayesian Computation (ABC)
(Beaumont et al., 2002; Marin et al., 2012). Other approaches include indirect inference (Gouriéroux et al.,
1993) and the method of simulated moments (McFadden, 1989). A number of articles have studied the
justification for these methods, for instance Pakes and Pollard (1989) for simulated moments, Heggland
and Frigessi (2004) for indirect inference, Atchadé (2015); Frazier et al. (2016) for parameter inference
with ABC and Robert et al. (2011) for model choice with ABC. An interesting review and connections
between existing and new simulation-based methods can be found in Forneron and Ng (2015). These studies
emphasize the need to find appropriate summary statistics or auxiliary models when performing inference
for generative models. Meanwhile, departures from the likelihood approach have also been shown to have
statistical advantages, e.g. in terms of robustness to model misspecification (Grünwald, 2012; Müller, 2013;
Miller and Dunson, 2015). Besides, ABC corresponds to standard Bayesian inference on a di�erent model,
with added measurement error (Wilkinson, 2013).

1
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Abstract

Generative moment matching network (GMMN) is a deep generative model that
differs from Generative Adversarial Network (GAN) by replacing the discriminator
in GAN with a two-sample test based on kernel maximum mean discrepancy
(MMD). Although some theoretical guarantees of MMD have been studied, the
empirical performance of GMMN is still not as competitive as that of GAN on
challenging and large benchmark datasets. The computational efficiency of GMMN
is also less desirable in comparison with GAN, partially due to its requirement
for a rather large batch size during the training. In this paper, we propose to
improve both the model expressiveness of GMMN and its computational efficiency
by introducing adversarial kernel learning techniques, as the replacement of a
fixed Gaussian kernel in the original GMMN. The new approach combines the key
ideas in both GMMN and GAN, hence we name it MMD-GAN. The new distance
measure in MMD-GAN is a meaningful loss that enjoys the advantage of weak⇤
topology and can be optimized via gradient descent with relatively small batch
sizes. In our evaluation on multiple benchmark datasets, including MNIST, CIFAR-
10, CelebA and LSUN, the performance of MMD-GAN significantly outperforms
GMMN, and is competitive with other representative GAN works.

1 Introduction

The essence of unsupervised learning models the underlying distribution PX of the data X . Deep
generative model [1, 2] uses deep learning to approximate the distribution of complex datasets with
promising results. However, modeling arbitrary density is a statistically challenging task [3]. In many
applications, such as caption generation [4], accurate density estimation is not even necessary since
we are only interested in sampling from the approximated distribution.

Rather than estimating the density of PX , Generative Adversarial Network (GAN) [5] starts from a
base distribution PZ over Z , such as Gaussian distribution, then trains a transformation network g

✓

such that P
✓

⇡ PX , where P
✓

is the underlying distribution of g
✓

(z) and z ⇠ PZ . During the training,
GAN-based algorithms require an auxiliary network f

�

for estimating the distance between PX
and P

✓

. Different probabilistic (pseudo) metrics have been studied [5–8] under GAN framework.

Instead of training an auxiliary network f
�

for measuring the distance between PX and P
✓

, Generative
moment matching network (GMMN) [9, 10] uses kernel maximum mean discrepancy (MMD) [11],
which is the centerpiece of nonparametric two-sample test, to determine the distribution distances.
During the training, g

✓

is trained to pass the hypothesis test (minimize MMD distance). [11] shows
even the simple Gaussian kernel enjoys the strong theoretical guarantees (Theorem 1). However, the
empirical performance of GMMN does not meet its theoretical properties. There is no promising
empirical results comparable with GAN on challenging benchmarks [12, 13]. Computationally,
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Abstract

We consider training a deep neural network to
generate samples from an unknown distribu-
tion given i.i.d. data. We frame learning as
an optimization minimizing a two-sample test
statistic—informally speaking, a good genera-
tor network produces samples that cause a two-
sample test to fail to reject the null hypothesis.
As our two-sample test statistic, we use an un-
biased estimate of the maximum mean discrep-
ancy, which is the centerpiece of the nonpara-
metric kernel two-sample test proposed by Gret-
ton et al. [2]. We compare to the adversar-
ial nets framework introduced by Goodfellow et
al. [1], in which learning is a two-player game
between a generator network and an adversarial
discriminator network, both trained to outwit the
other. From this perspective, the MMD statistic
plays the role of the discriminator. In addition to
empirical comparisons, we prove bounds on the
generalization error incurred by optimizing the
empirical MMD.

1 INTRODUCTION

In this paper, we consider the problem of learning gener-
ative models from i.i.d. data with unknown distribution P .
We formulate the learning problem as one of finding a func-
tion G, called the generator, such that, given an input Z

drawn from some fixed noise distribution N , the distribu-
tion of the output G(Z) is close to the data’s distribution
P . Note that, given G and N , we can easily generate new
samples despite not having an explicit representation for
the underlying density.

We are particularly interested in the case where the gener-
ator is a deep neural network whose parameters we must
learn. Rather than being used to classify or predict, these
networks transport input randomness to output random-

ness, thus inducing a distribution. The first direct in-
stantiation of this idea is due to MacKay [7], although
MacKay draws connections even further back to the work
of Saund [11] and others on autoencoders, suggesting that
generators can be understood as decoders. MacKay’s pro-
posal, called density networks, uses multi-layer perceptrons
(MLP) as generators and learns the parameters by approxi-
mating Bayesian inference.

Since MacKay’s proposal, there has been a great deal of
progress on learning generative models, especially over
high-dimensional spaces like images. Some of the most
successful approaches have been based on restricted Boltz-
mann machines [10] and deep Boltzmann networks [3]. A
recent example is the Neural Autoregressive Density Esti-
mator due to Uria, Murray, and Larochelle [15]. An indepth
survey, however, is beyond the scope of this article.

This work builds on a proposal due to Goodfellow et al.
[1]. Their adversarial nets framework takes an indirect
approach to learning deep generative neural networks: a
discriminator network is trained to recognize the differ-
ence between training data and generated samples, while
the generator is trained to confuse the discriminator. The
resulting two-player game is cast as a minimax optimiza-
tion of a differentiable objective and solved greedily by it-
eratively performing gradient descent steps to improve the
generator and then the discriminator.

Given the greedy nature of the algorithm, Goodfellow et
al. [1] give a careful prescription for balancing the training
of the generator and the discriminator. In particular, two
gradient steps on the discriminator’s parameters are taken
for every iteration of the generator’s parameters. It is not
clear at this point how sensitive this balance is as the data
set and network vary. In this paper, we describe an approx-
imation to adversarial learning that replaces the adversary
with a closed-form nonparametric two-sample test statistic
based on the Maximum Mean Discrepancy (MMD), which
we adopted from the kernel two sample test [2]. We call our
proposal MMD nets.1 We give bounds on the estimation

1In independent work reported in a recent preprint, Li, Swer-
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1 Introduction

The problem this paper is concerned with is that of unsupervised learning. Mainly,
what does it mean to learn a probability distribution? The classical answer to this
is to learn a probability density. This is often done by defining a parametric family
of densities (P✓)✓2Rd and finding the one that maximized the likelihood on our data:
if we have real data examples {x(i)}mi=1, we would solve the problem

max
✓2Rd

1

m

mX

i=1

logP✓(x
(i))

If the real data distribution Pr admits a density and P✓ is the distribution of the
parametrized density P✓, then, asymptotically, this amounts to minimizing the
Kullback-Leibler divergence KL(PrkP✓).

For this to make sense, we need the model density P✓ to exist. This is not
the case in the rather common situation where we are dealing with distributions
supported by low dimensional manifolds. It is then unlikely that the model manifold
and the true distribution’s support have a non-negligible intersection (see [1]), and
this means that the KL distance is not defined (or simply infinite).

The typical remedy is to add a noise term to the model distribution. This is why
virtually all generative models described in the classical machine learning literature
include a noise component. In the simplest case, one assumes a Gaussian noise
with relatively high bandwidth in order to cover all the examples. It is well known,
for instance, that in the case of image generation models, this noise degrades the
quality of the samples and makes them blurry. For example, we can see in the
recent paper [23] that the optimal standard deviation of the noise added to the
model when maximizing likelihood is around 0.1 to each pixel in a generated image,
when the pixels were already normalized to be in the range [0, 1]. This is a very
high amount of noise, so much that when papers report the samples of their models,
they don’t add the noise term on which they report likelihood numbers. In other
words, the added noise term is clearly incorrect for the problem, but is needed to
make the maximum likelihood approach work.

1
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Abstract

Boltzmann machines are able to learn highly complex, multimodal, structured
and multiscale real-world data distributions. Parameters of the model are usually
learned by minimizing the Kullback-Leibler (KL) divergence from training samples
to the learned model. We propose in this work a novel approach for Boltzmann
machine training which assumes that a meaningful metric between observations is
known. This metric between observations can then be used to define the Wasserstein
distance between the distribution induced by the Boltzmann machine on the one
hand, and that given by the training sample on the other hand. We derive a
gradient of that distance with respect to the model parameters. Minimization of this
new objective leads to generative models with different statistical properties. We
demonstrate their practical potential on data completion and denoising, for which
the metric between observations plays a crucial role.

1 Introduction

Boltzmann machines [1] are powerful generative models that can be used to approximate a large
class of real-world data distributions, such as handwritten characters [9], speech segments [7], or
multimodal data [16]. Boltzmann machines share similarities with neural networks in their capability
to extract features at multiple scales, and to build well-generalizing hierarchical data representations
[15, 13]. The restricted Boltzmann machine (RBM) is a special type of Boltzmann machine composed
of one layer of latent variables, and defining a probability distribution p✓(x) over a set of d binary
observed variables whose state is represented by the binary vector x 2 {0, 1}d, and with a parameter
vector ✓ to be learned.

Given an empirical probability distribution p̂(x) = 1
N

PN
n=1 �xn where (xn)n is a list of N observa-

tions in {0, 1}d, an RBM can be trained using information-theoretic divergences (see for example
[12]) by minimizing with respect to ✓ a divergence �(p̂, p✓) between the sample empirical measure p̂
and the modeled distribution p✓. When � is for instance the KL divergence, this approach results in
the well-known Maximum Likelihood Estimator (MLE), which yields gradients for the ✓ of the form

r✓KL(p̂ k p✓) = � 1

N

NX

n=1

r✓ log p✓(xn) = �⌦r✓ log p✓(x)
↵
p̂
, (1)

where the bracket notation h·ip indicates an expectation with respect to p. Alternative choices for �
are the Bhattacharrya/Hellinger and Euclidean distances between distributions, or more generally

⇤Also with the Department of Brain and Cognitive Engineering, Korea University.
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Abstract

In purely generative models, one can simulate data given parameters but not necessarily evaluate the
likelihood. We use Wasserstein distances between empirical distributions of observed data and empirical
distributions of synthetic data drawn from such models to estimate their parameters. Previous interest
in the Wasserstein distance for statistical inference has been mainly theoretical, due to computational
limitations. Thanks to recent advances in numerical transport, the computation of these distances
has become feasible, up to controllable approximation errors. We leverage these advances to propose
point estimators and quasi-Bayesian distributions for parameter inference, first for independent data.
For dependent data, we extend the approach by using delay reconstruction techniques. We provide a
theoretical study of the proposed estimators, and adaptive Monte Carlo algorithms to approximate them.
The approach is illustrated on three examples: a quantile g-and-k distribution, a toggle switch model
from systems biology, and a Lotka-Volterra model for plankton population sizes.

1 Introduction
The likelihood function plays a central role in statistics, and arguably provides all the relevant information
for inference (Berger et al., 1988). However, for many models of interest, the likelihood cannot be evaluated,
often because it involves an intractable integral over latent variables. It might be possible to generate
synthetic data sets given parameters, in which case the model is said to be generative. This article is about
statistical inference for generative models.

Various approaches exist to perform inference for generative models. A popular approach consists in
replacing the likelihood by an approximation and aiming for either point estimators (Diggle and Gratton,
1984; Wood, 2010), or quasi-posterior distributions, leading to Approximate Bayesian Computation (ABC)
(Beaumont et al., 2002; Marin et al., 2012). Other approaches include indirect inference (Gouriéroux et al.,
1993) and the method of simulated moments (McFadden, 1989). A number of articles have studied the
justification for these methods, for instance Pakes and Pollard (1989) for simulated moments, Heggland
and Frigessi (2004) for indirect inference, Atchadé (2015); Frazier et al. (2016) for parameter inference
with ABC and Robert et al. (2011) for model choice with ABC. An interesting review and connections
between existing and new simulation-based methods can be found in Forneron and Ng (2015). These studies
emphasize the need to find appropriate summary statistics or auxiliary models when performing inference
for generative models. Meanwhile, departures from the likelihood approach have also been shown to have
statistical advantages, e.g. in terms of robustness to model misspecification (Grünwald, 2012; Müller, 2013;
Miller and Dunson, 2015). Besides, ABC corresponds to standard Bayesian inference on a di�erent model,
with added measurement error (Wilkinson, 2013).

1
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Abstract

The ability to compare two degenerate proba-
bility distributions, that is two distributions
supported on low-dimensional manifolds in
much higher-dimensional spaces, is a crucial
factor in the estimation of generative mod-
els.It is therefore no surprise that optimal
transport (OT) metrics and their ability to
handle measures with non-overlapping sup-
ports have emerged as a promising tool. Yet,
training generative machines using OT raises
formidable computational and statistical chal-
lenges, because of (i) the computational bur-
den of evaluating OT losses, (ii) their instabil-
ity and lack of smoothness, (iii) the difficulty
to estimate them, as well as their gradients,
in high dimension. This paper presents the
first tractable method to train large scale gen-
erative models using an OT-based loss called
Sinkhorn loss which tackles these three issues
by relying on two key ideas: (a) entropic
smoothing, which turns the original OT loss
into a differentiable and more robust quantity
that can be computed using Sinkhorn fixed
point iterations; (b) algorithmic (automatic)
differentiation of these iterations with seam-
less GPU execution. Additionally, Entropic
smoothing generates a family of losses inter-
polating between Wasserstein (OT) and En-
ergy distance/Maximum Mean Discrepancy
(MMD) losses, thus allowing to find a sweet
spot leveraging the geometry of OT on the one
hand, and the favorable high-dimensional sam-
ple complexity of MMD, which comes with un-
biased gradient estimates. The resulting com-
putational architecture complements nicely
standard deep network generative models by

Preliminary work. Under review by AISTATS 2018. Do not

distribute.

a stack of extra layers implementing the loss
function.

1 Introduction

Several important statistical problems boil down to
fitting densities, i.e. estimating the parameters of a
chosen model that fits observed data in some mean-
ingful way. While the standard approach is maximum
likelihood estimation, this approach is often flawed in
machine learning tasks where the sought after distribu-
tion is obtained in a generative fashion, i.e. described
using a sampling mechanism (often a non-linear func-
tion mapping a low dimensional latent random vector
to a high dimensional space). Indeed, in these set-
tings, the density is singular in the sense that it only
has positive probability on a low-dimensional manifold
of the observation space and is zero elsewhere. To
remedy these issues, and in line with several recent
proposals [2, 26, 4, 1], we propose to shift away from
information divergence based methods (among which
the MLE) and consider instead the geometry of optimal
transport [35, 30] to define such a fitting criterion.

Previous works. For purely generative models, sev-
eral likelihood-free workarounds exist. Major ap-
proaches include variational autoencoders (VAE) [21],
generative adversarial networks (GAN) [15] and several
more variations including combinations of both [23].
The adversarial GAN approach is implicitly geometric
in the sense that it computes the best achievable classi-
fication accuracy (taking for granted the training and
generated datapoints have opposite labels) for a given
class of classifiers as a proxy for the distance between
two distributions: If accuracy is high distributions are
well separated, if accuracy is low they are difficult to
tell apart and lie thus at a very close distance.

Geometry was also explicitly considered when trying
to minimize a flexible metric between distributions:
the maximal mean discrepancy [16]. It was shown
in ensuing works that the effectiveness of the MMD
in that setting [25, 11] hinges on the ability to find
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Abstract

We present Optimal Transport GAN (OT-GAN), a variant of generative adversarial
nets minimizing a new metric measuring the distance between the generator distri-
bution and the training data. This metric, which we call mini-batch energy distance,
combines optimal transport in primal form with an energy distance defined in an
adversarially learned feature space, resulting in a highly discriminative distance
function with unbiased mini-batch gradients and statistical consistency guarantees.
Experimentally we show OT-GAN to be highly stable when trained with large
mini-batches, and we present state-of-the-art results on several popular benchmark
problems for image generation.

1 Introduction

Generative modeling is a major sub-field of Machine Learning that studies the problem of how
to learn models that generate images, audio, video, text or other data. Applications of generative
models include image compression, generating speech from text, planning in reinforcement learning,
semi-supervised and unsupervised representation learning, and many others. Since generative models
can be trained on unlabeled data, which is almost endlessly available, they have enormous potential
in the development of artificial intelligence.

The central problem in generative modeling is how to train a generative model such that the distribution
of its generated data will match the distribution of the training data. Generative adversarial nets
(GANs) represent an advance in solving this problem, using a neural network discriminator or critic

to distinguish between generated data and training data. The critic defines a distance between the
model distribution and the data distribution which the generative model can optimize to produce data
that more closely resembles the training data.

A closely related approach to measuring the distance between the distributions of generated data
and training data is provided by optimal transport theory. By framing the problem as optimally
transporting one set of data points to another, it represents an alternative method of specifying a
metric over probability distributions and provides another objective for training generative models.
The dual problem of optimal transport is closely related to GANs, as discussed in the next section.
However, the primal formulation of optimal transport has the advantage that it allows for closed form
solutions and can thus more easily be used to define tractable training objectives that can be evaluated
in practice without making approximations. A complication in using primal form optimal transport is
that it may give biased gradients when used with mini-batches (see Bellemare et al., 2017) and may
therefore be inconsistent as a technique for statistical estimation.

⇤equal contribution
†work performed during an internship at OpenAI

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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Abstract

Generative moment matching network (GMMN) is a deep generative model that
differs from Generative Adversarial Network (GAN) by replacing the discriminator
in GAN with a two-sample test based on kernel maximum mean discrepancy
(MMD). Although some theoretical guarantees of MMD have been studied, the
empirical performance of GMMN is still not as competitive as that of GAN on
challenging and large benchmark datasets. The computational efficiency of GMMN
is also less desirable in comparison with GAN, partially due to its requirement
for a rather large batch size during the training. In this paper, we propose to
improve both the model expressiveness of GMMN and its computational efficiency
by introducing adversarial kernel learning techniques, as the replacement of a
fixed Gaussian kernel in the original GMMN. The new approach combines the key
ideas in both GMMN and GAN, hence we name it MMD-GAN. The new distance
measure in MMD-GAN is a meaningful loss that enjoys the advantage of weak⇤
topology and can be optimized via gradient descent with relatively small batch
sizes. In our evaluation on multiple benchmark datasets, including MNIST, CIFAR-
10, CelebA and LSUN, the performance of MMD-GAN significantly outperforms
GMMN, and is competitive with other representative GAN works.

1 Introduction

The essence of unsupervised learning models the underlying distribution PX of the data X . Deep
generative model [1, 2] uses deep learning to approximate the distribution of complex datasets with
promising results. However, modeling arbitrary density is a statistically challenging task [3]. In many
applications, such as caption generation [4], accurate density estimation is not even necessary since
we are only interested in sampling from the approximated distribution.

Rather than estimating the density of PX , Generative Adversarial Network (GAN) [5] starts from a
base distribution PZ over Z , such as Gaussian distribution, then trains a transformation network g

✓

such that P
✓

⇡ PX , where P
✓

is the underlying distribution of g
✓

(z) and z ⇠ PZ . During the training,
GAN-based algorithms require an auxiliary network f

�

for estimating the distance between PX
and P

✓

. Different probabilistic (pseudo) metrics have been studied [5–8] under GAN framework.

Instead of training an auxiliary network f
�

for measuring the distance between PX and P
✓

, Generative
moment matching network (GMMN) [9, 10] uses kernel maximum mean discrepancy (MMD) [11],
which is the centerpiece of nonparametric two-sample test, to determine the distribution distances.
During the training, g

✓

is trained to pass the hypothesis test (minimize MMD distance). [11] shows
even the simple Gaussian kernel enjoys the strong theoretical guarantees (Theorem 1). However, the
empirical performance of GMMN does not meet its theoretical properties. There is no promising
empirical results comparable with GAN on challenging benchmarks [12, 13]. Computationally,

⇤Equal Contribution
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Abstract

We consider training a deep neural network to
generate samples from an unknown distribu-
tion given i.i.d. data. We frame learning as
an optimization minimizing a two-sample test
statistic—informally speaking, a good genera-
tor network produces samples that cause a two-
sample test to fail to reject the null hypothesis.
As our two-sample test statistic, we use an un-
biased estimate of the maximum mean discrep-
ancy, which is the centerpiece of the nonpara-
metric kernel two-sample test proposed by Gret-
ton et al. [2]. We compare to the adversar-
ial nets framework introduced by Goodfellow et
al. [1], in which learning is a two-player game
between a generator network and an adversarial
discriminator network, both trained to outwit the
other. From this perspective, the MMD statistic
plays the role of the discriminator. In addition to
empirical comparisons, we prove bounds on the
generalization error incurred by optimizing the
empirical MMD.

1 INTRODUCTION

In this paper, we consider the problem of learning gener-
ative models from i.i.d. data with unknown distribution P .
We formulate the learning problem as one of finding a func-
tion G, called the generator, such that, given an input Z

drawn from some fixed noise distribution N , the distribu-
tion of the output G(Z) is close to the data’s distribution
P . Note that, given G and N , we can easily generate new
samples despite not having an explicit representation for
the underlying density.

We are particularly interested in the case where the gener-
ator is a deep neural network whose parameters we must
learn. Rather than being used to classify or predict, these
networks transport input randomness to output random-

ness, thus inducing a distribution. The first direct in-
stantiation of this idea is due to MacKay [7], although
MacKay draws connections even further back to the work
of Saund [11] and others on autoencoders, suggesting that
generators can be understood as decoders. MacKay’s pro-
posal, called density networks, uses multi-layer perceptrons
(MLP) as generators and learns the parameters by approxi-
mating Bayesian inference.

Since MacKay’s proposal, there has been a great deal of
progress on learning generative models, especially over
high-dimensional spaces like images. Some of the most
successful approaches have been based on restricted Boltz-
mann machines [10] and deep Boltzmann networks [3]. A
recent example is the Neural Autoregressive Density Esti-
mator due to Uria, Murray, and Larochelle [15]. An indepth
survey, however, is beyond the scope of this article.

This work builds on a proposal due to Goodfellow et al.
[1]. Their adversarial nets framework takes an indirect
approach to learning deep generative neural networks: a
discriminator network is trained to recognize the differ-
ence between training data and generated samples, while
the generator is trained to confuse the discriminator. The
resulting two-player game is cast as a minimax optimiza-
tion of a differentiable objective and solved greedily by it-
eratively performing gradient descent steps to improve the
generator and then the discriminator.

Given the greedy nature of the algorithm, Goodfellow et
al. [1] give a careful prescription for balancing the training
of the generator and the discriminator. In particular, two
gradient steps on the discriminator’s parameters are taken
for every iteration of the generator’s parameters. It is not
clear at this point how sensitive this balance is as the data
set and network vary. In this paper, we describe an approx-
imation to adversarial learning that replaces the adversary
with a closed-form nonparametric two-sample test statistic
based on the Maximum Mean Discrepancy (MMD), which
we adopted from the kernel two sample test [2]. We call our
proposal MMD nets.1 We give bounds on the estimation

1In independent work reported in a recent preprint, Li, Swer-
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⇧(µ,⌫)
def
= {P 2 P(⌦⇥ ⌦)| 8A,B ⇢ ⌦,

P (A⇥ ⌦) = µ(A),

P (⌦⇥B) = ⌫(B)}

• Instead of maps                  , consider 
probabilistic maps, i.e. couplings                        :            

T : ⌦ ! ⌦
P 2 P(⌦⇥ ⌦)
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PRIMAL

Def. Given µ,⌫ in P(⌦); a cost function

c on ⌦⇥ ⌦, the Kantorovich problem is

inf

P2⇧(µ,⌫)

ZZ
c(x, y)P (dx, dy).
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28

PRIMAL

Def. Given µ,⌫ in P(⌦); a cost function

c on ⌦⇥ ⌦, the Kantorovich problem is

inf

P2⇧(µ,⌫)

ZZ
c(x, y)P (dx, dy).

DUAL

sup
'2L1(µ), 2L1(⌫)
'(x)+ (y)c(x,y)

Z
'dµ+

Z
 d⌫.



(Kantorovich) Wasserstein Distances
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Let p � 1. Let c := D, a metric.

Def. The p-Wasserstein distance between
µ,⌫ in P(⌦) is

Wp(µ,⌫)
def
=

✓
inf

P2⇧(µ,⌫)

ZZ
D(x, y)pP (dx, dy)

◆1/p

.



(Kantorovich) Wasserstein Distances
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Let p � 1. Let c := D, a metric.

Def. The p-Wasserstein distance between
µ,⌫ in P(⌦) is

Wp(µ,⌫)
def
=

✓
inf

P2⇧(µ,⌫)

ZZ
D(x, y)pP (dx, dy)

◆1/p

.

p
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P(⌦)

Optimal Transport Geometry
Very different geometry than standard 

information divergences (KL, Euclidean)

µ

⌫
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Wasserstein Distance

W (p✓, p✓0)
P(⌦)

Optimal Transport Geometry
Very different geometry than standard 

information divergences (KL, Euclidean)

µ

⌫
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[McCann’95]  
Interpolant
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p✓0

p✓ p✓00

P (⌦)

Optimal Transport Geometry

Very different geometry than standard 
information divergences (KL, Euclidean)
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p✓0

p✓ p✓00

Wasserstein  
Barycenter 
[Agueh’11]P (⌦)

Optimal Transport Geometry

Very different geometry than standard 
information divergences (KL, Euclidean)
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� 2 ⌃3
Wasserstein mean L2 mean

Optimal Transport Geometry
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� 2 ⌃3
Wasserstein mean L2 mean

Optimal Transport Geometry
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Computational OT

Up to 2010: OT solvers

Goal now: use OT as a loss or fidelity term

Wp(µ,⌫) =?

argmin
µ2P(⌦)

F (Wp(µ,⌫1),Wp(µ,⌫2), . . . ,µ) =?

rµWp(µ,⌫1) =?
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Discrete - Continuous 

Continuous - Continuous 

Discrete - Discrete

How can we compute OT?
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Discrete - Continuous 

Continuous - Continuous 

Discrete - Discrete

Stochastic  
Optimization

PDE’s

- Network flow solvers 
- (Entropic) regularization

[Genevay’16]

low dim.
[Mérigot’11][Kitagawa’16][Levy’15]

[Benamou’98]

How can we compute OT?
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OT on Two Discrete Measures

µ =
nX
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Wasserstein on Discrete Measures
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U(a, b)
def
= {P 2 Rn⇥m

+ |P1m = a,P T1n = b}
MXY

def
= [D(xi,yj)

p]ij

Def. Optimal Transport Problem

W p
p (µ,⌫) = min

P2U(a,b)
hP ,MXY i

Consider µ =

nX

i=1

a
i

�
xi and ⌫ =

mX

j=1

b
j

�
yj .



Solving the OT Problem
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MXY

U(a, b)
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MXY

U(a, b)

P ?

O(n3
log(n))

min cost flow solver 
used in practice.

Solving the OT Problem



38

MXY

U(a, b)

P ?

O(n3
log(n))

min cost flow solver 
used in practice.

P ?Solution       unstable 
and not always unique.

Solving the OT Problem



38

MXY

U(a, b)

O(n3
log(n))

min cost flow solver 
used in practice.

P ?Solution       unstable 
and not always unique.{P ?}

Solving the OT Problem
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MXY
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used in practice.

{P ?}
P ?Solution       unstable 

and not always unique.

Solving the OT Problem



39

MXY

U(a, b)

O(n3
log(n))

min cost flow solver 
used in practice.

P ?

P ?Solution       unstable 
and not always unique.

Solving the OT Problem



39

MXY

U(a, b)

O(n3
log(n))

min cost flow solver 
used in practice.

P ?

P ?Solution       unstable 
and not always unique.

W p
p (µ,⌫) not di↵erentiable.

Solving the OT Problem



Solution: Regularization
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MXY

U(a, b)

P ?

Wishlist:  
faster & scalable, more stable, 

differentiable



Entropic Regularization [Wilson’62]

41
Note: Unique optimal solution because of strong concavity of entropy

E(P )

def
= �

nmX

i,j=1

Pij(logPij � 1)

Def. Regularized Wasserstein, � � 0

W�(µ,⌫)
def
= min

P2U(a,b)
hP ,MXY i � �E(P )



Entropic Regularization [Wilson’62]

41

EMD Entropy

Discrete analog:  Cuturi, NIPS 2013

�
µ

⌫

P�

Note: Unique optimal solution because of strong concavity of entropy

Def. Regularized Wasserstein, � � 0

W�(µ,⌫)
def
= min

P2U(a,b)
hP ,MXY i � �E(P )



Entropic Regularization [Wilson’62]

41

EMD Entropy

Discrete analog:  Cuturi, NIPS 2013

�
µ

⌫

P�

Note: Unique optimal solution because of strong concavity of entropy

Def. Regularized Wasserstein, � � 0

W�(µ,⌫)
def
= min

P2U(a,b)
hP ,MXY i � �E(P )



Fast & Scalable Algorithm

42

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P )

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�
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42

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P )

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�

L(P,↵,�) =
X

ij

PijMij + �Pij(logPij � 1) + ↵T
(P1� a) + �T

(PT1� b)

@L/@Pij = Mij + � logPij + ↵i + �j

(@L/@Pij = 0) )Pij = e
↵i

� e
�

Mij

� e
�j

�
= ui KKijvj
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def
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hP ,MXY i��E(P )
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+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�

P� 2 U(a, b) ,
(
diag(u)KKdiag(v)1m = a

diag(v)KKTdiag(u)1n = b
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P� 2 U(a, b) ,
(
diag(u)KKdiag(v)1m = a

diag(v)KKTdiag(u)1n = b

v

u

u �
v �
u = a/KKv

v = b/KKTu

1.

2.

Sinkhorn’s Algorithm : Repeat
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u = a/KKv

v = b/KKTu

1.

2.

Sinkhorn’s Algorithm : Repeat

• [Sinkhorn’64] proved convergence for the first time. 

• [Lorenz’89] linear convergence, see [Altschuler’17]  

•               complexity, GPGPU parallel [Cuturi’13] . 

•                     on gridded spaces using convolutions.

O(nm)

[Solomon’15]
O(n logn)



Fast & Scalable Algorithm

45

• [Sinkhorn’64] fixed-point iterations for (u,v)
u a/KKv, v  b/KKTu

v0

KK

a b
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• [Sinkhorn’64] fixed-point iterations for (u,v)
u a/KKv, v  b/KKTu v0
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KK
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• [Sinkhorn’64] fixed-point iterations for (u,v)
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• [Sinkhorn’64] fixed-point iterations for (u,v)
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• [Sinkhorn’64] fixed-point iterations for (u,v)
u a/KKv, v  b/KKTu

u2

v2
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a b

:=

a
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b
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• [Sinkhorn’64] fixed-point iterations for (u,v)
u a/KKv, v  b/KKTu v2
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a b
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• [Sinkhorn’64] fixed-point iterations for (u,v)
u a/KKv, v  b/KKTu v2

u3
etc….

KK

a b

:=

a

KK

:=

b

KKT
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• [Sinkhorn’64] fixed-point iterations.         

PL :=

diag(uL)
diag(vL)

KK

KK

a b
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• [Sinkhorn’64] fixed-point iterations.         

PL :=

diag(uL)
diag(vL)

KK

KK

a b

hPL,MXY i = uL
T (KK �MXY )vL



Also embarrassingly parallel
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• [Sinkhorn’64] with matrix fixed-point iterations

KK

A

B

V0

47



Also embarrassingly parallel

47

• [Sinkhorn’64] with matrix fixed-point iterations

KK

A

B

V0

:=

47

:=



Also embarrassingly parallel

47

• [Sinkhorn’64] with matrix fixed-point iterations

KK

A

B

V0

:=

47

:=



Also embarrassingly parallel

47

• [Sinkhorn’64] with matrix fixed-point iterations

KK

A

B

V0

U0

:=

47

:=



Also embarrassingly parallel

47

• [Sinkhorn’64] with matrix fixed-point iterations

KK

A

B

V0

U0

:=

47

:=



Also embarrassingly parallel

47

• [Sinkhorn’64] with matrix fixed-point iterations

KK

A

B

V0

U0

:=

V1

47

:=



Also embarrassingly parallel

47

• [Sinkhorn’64] with matrix fixed-point iterations

KK

A

B

U0

:=

V1

47

:=



Also embarrassingly parallel

47

• [Sinkhorn’64] with matrix fixed-point iterations

KK

A

B

U0

:=

V1

U1

47

:=



Also embarrassingly parallel

47

• [Sinkhorn’64] with matrix fixed-point iterations

KK

A

B
:=

V1

U1

47

:=



Also embarrassingly parallel

47

• [Sinkhorn’64] with matrix fixed-point iterations

KK

A

B
:=

V1

U1

47

:=

etc….
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(⌦,D)

⌫ =
mX

j=1

bj�yjX  X +�X

µ =
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i=1

a
i

�
xi

Sinkhorn ⤑ Differentiability
W ((a,X + �X), (b, Y )) = W ((a,X), (b, Y ))+??
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Sinkhorn: A Programmer View

Def. For L � 1, define

WL(µ,⌫)
def
= hPL,MXY i,

KK

` `+ 1

Sinkhorn

` = 1, . . . , L� 1

y1, . . . , ym

1m

x1, . . . , xn MXY

⇥KK ⇥KKT

uT
L( KK �MXY )vL

vl ul+1

a/·
vl+1

b/· WLa b
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Sinkhorn: A Programmer View

Def. For L � 1, define

WL(µ,⌫)
def
= hPL,MXY i,

Prop.

@WL
@X , @WL

@a can be computed recur-

sively, in O(L) kernelKK⇥vector products.

[Hashimoto’16][Bonneel’16][Shalit’16][Flammary’16]
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⌫1

⌫2

⌫3

P(⌦)

OT: Barycenters
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Wasserstein  
Barycenter 
[Agueh’11]

min
µ2P(⌦)

NX

i=1

�iW
p
p (µ,⌫i)

⌫1

⌫2

⌫3

P(⌦)

OT: Barycenters
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Very different geometry than standard 
information divergences (KL, Euclidean)

OT: Barycenters
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Very different geometry than standard 
information divergences (KL, Euclidean)

OT: Barycenters
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(Word Mover’s Distance)

[Kusner’15] dist(D1, D2) = W2(µ,⌫)

µ
⌫
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Topic Models

[Rolet’16]
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Wasserstein Inverse Problems
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Application: Volume Reconstruction

[Bonneel’16]
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Application: Brain Mapping

Flickr database Input KL (23 min)
�2 = 1

TV (38 min)
�0,2,6 = (0.34, 0.23, 0.42)

Wasserstein (49 min)
�0,8 = (0.37, 0.63)

Quadratic (33min)
�2,4,6,8 =

(0.11, 0.42, 0.24, 0.10)

[Pitié et al. 2007],
�0 = 1

[Pitié et al. 2007],
�2 = 1

[Pitié et al. 2007],
�4 = 1

[Pitié et al. 2007],
�6 = 1

[Pitié et al. 2007],
�8 = 1

Figure 8: Using the image search engine Flickr, we use the top 10 results for the query autumn (here, with Commercial use allowed and
sorted by Interesting) and use them to color grade a summer image. (First row) For different loss functions, we show the non-zero barycentric
coordinates and total computation time using 128

3 voxel RGB color histograms, L = 60 and our CPU implementation. (Second row) We use
the color matching of Pitie et al. [2007] to transfer colors from the most contributing photographs (numbered 0, 2, 4, 6 and 8). As existing
techniques use a single target histogram, this can lead to large color distortion.

Original Euclidean Wasserstein
projection projection

Figure 11: (left) Original MRI, followed by two 208⇥ 276⇥ 225

histogram projections, using the Euclidean simplex (middle) and
the Wasserstein simplex (right), both computed using an `2 loss.
The Euclidean barycentric coordinates consist in 8 non-zero values,
while the Wasserstein barycentric coordinates have 9.

the Wasserstein simplex of the 14 original MRIs, as illustrated in
Figure 11. The test MRI is projected on both simplexes using a `2
loss. The coefficients selected by these two procedures have a sparse
support, with 9 and 8 non-zero weights respectively. These two
projections share 7 of these coefficients, with comparable weights.
Although the Euclidean barycenter looks sharper, close inspection
reveals overlapping boundaries and edges (see insets) while our
Wasserstein projection results in well-defined contours.

6 Discussion

This paper introduces the concept of Wasserstein barycentric coordi-
nates. We illustrate this tool with applications to color manipulation,
reflectance approximation, and shape inference.

Shape database Input shape P (�) Iso-surface

Figure 12: When the database is too far from the input shape, our
method produces poor reconstructions. The computed weight is
� = (0.62, 4.10�4, 0, 0, 0.38).

Performance. While our method scales to large densely sampled
histograms (we experimented with grids of size up to 256

3 and his-
tograms supported on the sphere such as BRDFs), our method is
limited by its memory requirements, and remains slow for databases
exceeding more than 10-20 dense histograms. Memory requirements
increase linearly with the number of iterations L, the number of in-
put histograms S, and the number of bins N . In practice, we used
between L = 50 and 100 iterations. A memory-free implementa-
tion would make the time complexity of the algorithm quadratic in
the number of iterations instead of linear. Regarding speed, for a
regression on a 10-histogram database typically converging within
10 L-BFGS iterations, each consisting of 100 fixed-point iterations,
both our multicore CPU C++ implementation and multi-GPU mat-
lab implementations perform about 40k convolutions. This ranges
from seconds for 1D and 2D histograms to minutes for small 3D
histograms (⇠ 64

3) or hours for denser 3D histograms with the C++
implementation. The latter computations only require a few min-
utes on four K-80 GPUs. We found that initial L-BFGS iterations
can be carried out using coarser gradient approximations, without
impacting convergence.

Quality. When the histogram database is far from the input his-
togram, the input histogram will unlikely be faithfully approximated
by Wasserstein barycenters. For applications such as shape inference,
this can lead to erroneous reconstructions (Fig. 12).

Future work. We observed that our Wasserstein barycentric co-
ordinates are often very sparse. This sparsity might be attributed
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histogram projections, using the Euclidean simplex (middle) and
the Wasserstein simplex (right), both computed using an `2 loss.
The Euclidean barycentric coordinates consist in 8 non-zero values,
while the Wasserstein barycentric coordinates have 9.

the Wasserstein simplex of the 14 original MRIs, as illustrated in
Figure 11. The test MRI is projected on both simplexes using a `2
loss. The coefficients selected by these two procedures have a sparse
support, with 9 and 8 non-zero weights respectively. These two
projections share 7 of these coefficients, with comparable weights.
Although the Euclidean barycenter looks sharper, close inspection
reveals overlapping boundaries and edges (see insets) while our
Wasserstein projection results in well-defined contours.

6 Discussion

This paper introduces the concept of Wasserstein barycentric coordi-
nates. We illustrate this tool with applications to color manipulation,
reflectance approximation, and shape inference.
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Figure 12: When the database is too far from the input shape, our
method produces poor reconstructions. The computed weight is
� = (0.62, 4.10�4, 0, 0, 0.38).

Performance. While our method scales to large densely sampled
histograms (we experimented with grids of size up to 256

3 and his-
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utes on four K-80 GPUs. We found that initial L-BFGS iterations
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Quality. When the histogram database is far from the input his-
togram, the input histogram will unlikely be faithfully approximated
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this can lead to erroneous reconstructions (Fig. 12).

Future work. We observed that our Wasserstein barycentric co-
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sorted by Interesting) and use them to color grade a summer image. (First row) For different loss functions, we show the non-zero barycentric
coordinates and total computation time using 128

3 voxel RGB color histograms, L = 60 and our CPU implementation. (Second row) We use
the color matching of Pitie et al. [2007] to transfer colors from the most contributing photographs (numbered 0, 2, 4, 6 and 8). As existing
techniques use a single target histogram, this can lead to large color distortion.
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Learning with a Wasserstein Loss
Dataset {(xi, yi)}, xi 2 Rp

, yi 2 Rn
+

xi

Goal is to find f✓ : Images 7! Labels

husky 
snow 
sled 
slope 
men
yi
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Learning with a Wasserstein Loss

min
✓2⇥

NX
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L(f✓(xi), yi)

xi

husky 
snow 
sled 
slope 
men
yi

Which loss L could we use?
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Learning with a Wasserstein Loss

min
✓2⇥

NX

i=1

L(f✓(xi), yi)
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Which loss L could we use?
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Learning with a Wasserstein Loss

min
✓2⇥

NX

i=1

L(f✓(xi), yi)

L(a, b) = min
P2Rnm

hP ,M i+ "KL(P1,a)

+ "KL(P T1, b)� �E(P )

1. Generalizes Word Mover’s to label clouds 
2.Sinkhorn algorithm can be generalized

[Frogner’15] [Chizat’15][Chizat’16]
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Minimum Kantorovich Estimators

min
✓2⇥

W (⌫data, f✓]µ)

[Bassetti’06] 1st reference discussing this approach. 

[Montavon’16] use regularized OT in a finite setting. 
[Arjovsky’17] (WGAN) uses a NN to approximate dual 
solutions and recover gradient w.r.t. parameter 
[Bernton’17] reject mechanism W(sample, data) 
[Genevay’17, Salimans’17] (Sinkhorn approach)

Challenge: r✓W (⌫data, f✓]µ)?
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Proposal: Autodiff OT using Sinkhorn

[GPC’17]

C K
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SinkhornGenerative model ` = 1, . . . , L� 1
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Approximate W loss by the transport cost

¯WL after L Sinkhorn iterations.
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Example: MNIST, Learning f✓
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Example: Generation of Images
Manuscript under review by AISTATS 2018

(a) MMD (b) " = 1000 (c) " = 10

Figure 4: Samples from the generator trained on CIFAR 10 for MMD and Sinkhorn loss (coming from the same
samples in the latent space)

Learning the cost With higher-resolution datasets,
such as classical benchmarks CIFAR10 or CelebA, using
the L2 metric between images yields very poor results.
It tends to generate images which are basically a blur
of similar images. The alternative, already outlined
in Algortithm 1 relies on learning another network
wich encodes meaningful feature vectors for the images,
between which can take the euclidean distance.

We compare our loss with different values for the regu-
larization parameter " to the results obtained with an
MMD loss with a gaussian kernel. The experimental
setting is the same as in [24] and we used the same
parameters to carry out a fair comparison.

Table 2 summarizes the inception scores on CIFAR10
for MMD and Sinkhorn loss with varying ". Generative
models are very hard to evaluate and there is no con-
sensus on which metric should be used to assess their
quality. We choose the inception score introduced in
[29] as it is well spread, and also the reference in [11]
agains which we compare our losses. The scores are
evalutated on 20000 random images. Figure 4 displays
a few of the associated samples (generated with the
same seed). Although there is no striking difference in
visual quality, the model with a Sinkhorn loss and a
large regularization is the one with the best score. The
poor scores of models which have a loss closer to the
true OT loss can be explained by two main factors : (i)
the number of iterations required for the convergence of
Sinkhorn with such " might exceed the total iteration
budget that we give the algorithm to compute the loss
(to ensure reasonable training time of the model), (ii) it
reflects the fact that sample complexity worsens when
we get closer to OT metrics, and increasing the batch
size might be beneficial in that case.

MMD " = 1000 " = 100 " = 10

4.04 ± 0.07 4.14 ± 0.06 3.09 ± 0.036 3.11 ± 0.031

Table 2: Inception Scores

Conclusion

In this paper, we presented a new computational tool-
box to train large scale generative models with the
Sinkhorn divergence. Thanks to the combination of
entropic smoothing and automatic differentiation, it
makes optimal transport applicable in arbitrary com-
plex generative model setups. Besides, we proved that
this divergence interpolates between classical OT and
MMD losses, benefiting from advantages of both frame-
works. Future work should focus on theoretical proper-
ties of the Sinkhorn divergence, in particular sample
complexity and positivity.
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• Learning with CIFAR-10 images 
• In these examples the cost function is also learned 

adversarially, as a NN mapping onto feature 
vectors.
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Example: Generation of Images
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Example: Generation of Images
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Concluding Remarks

• Regularized OT is much faster than OT.  

• Regularized OT can interpolate between W and the 
MMD / Energy distance metrics. 

• The solution of regularized OT is “auto-differentiable”. 
• Many open problems remain!


