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Multi-indexed data

• Sample groups
⇒ Data from mixed populations1

• Variable groups
⇒ Data from different modalities2

• Index groups
⇒ Data indexed over diverse domains3

1G. McLachlan and D. Peel. Finite mixture models. John Wiley and Sons, 2004.
2Y. Yilmaz and A. Hero, Multimodal Event Detection in Twitter Hashtag Networks, Journ. of

Signal Processing Systems, pp.1-16, 2016.
3K. Greenewald, S. Zhou, A.O. Hero, The Tensor Graphical Lasso (TeraLasso) arxiv1705.03983,

2017.
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Data cube of heterogeneous data

Multi-indexed data array:

Z = {Zi1,...,iK }
d1,...,dK
i1,...,iK

, d =
K∏
i=1

dk

Applications:

• predicting genome expression over time

• predicting weather from spatio-temporal climatological data

• human gait detection from low resolution video

• anomaly detection from videos of crowds

• classifying fMRI brain activation image sequences

Common traits of these applications:

• the indices index over different types of domains

• the content of the arrays is complex and high dimensional

• the content is noisy and of high variability

First order models not sufficient: much of the information lies in covariance
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Covariance representation d1 = S , d2 = T

Σ =cov(Z) takes partitioned form

5
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Measurement matrix and sample covariance

Sample 1 Sample 2 . . . Sample n

Variable 1 Z11 Z12 . . . Z1n

Variable 2 Z21 Z22 . . . Z2n

...
...

... . . .
...

Variable d Zd1 Zn2 . . . Zdn

d × n measurement matrix Z has i.i.d. columns Zi with Σ = cov(Zi )

Z =

 Z11 · · · · · · Z1n

...
. . .

. . .
...

Zd1 · · · · · · Zdn

 = [Z1, · · · ,Zn]

d × d sample covariance matrix:

Sn = (n − 1)−1
n∑

i=1

(Zi − Z)(Zi − Z)T

= (n − 1)−1Z(I− n−111T )ZT
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Empirical estimation of covariance under multivariate normal model

Multivariate normal model for Z

logf (Z|Σ) =
n

2
logdet(Σ−1)− n − 1

2
tr
(

SnΣ−1
)

Maximum likelihood covariance estimator Σ̂ = Ω̂−1 =soln to convex program1

Ω̂ = argminΩtr(SnΩ)− cnlogdet(Ω)

Note that there are p = d(d + 1)/2 = O(d2) unknown parameters in Σ

Requirements:

1 n ≥ O(d) for MLE to be unique and have finite variance

2 n ≥ O(d2) for estimator to be accurate (Bühlmann&VanDeGeer, 2011)

E [‖Σ̂−Σ‖2
F ] = O

(
d2/n

)

If Ω has structure can obtain E [‖Σ̂−Σ‖2
F ] = O (d/n), e.g. for sparse Ω

Ω̂ = argminΩtr(SnΩ)− cnlogdet(Ω) + λ‖Ω‖1 (GLasso)

1cn = n
n−1
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Many types of covariance structure have been studied

• Sparse structured covariance
• Banded covariance model: Bickel-Levina (2008)
• Sparse eigendecomposition model: Johnstone-Lu (2007)
• Stein shrinkage towards identity: Ledoit-Wolf (2005), Chen-Weisel-Eldar-H

(2010)

• Sparse inverse covariance: Gaussian graphical models
• Glasso: Freidman-Hastie,-Tibshirani(2007), Wiesel-Eldar-H (2010).
• l1-regularized logistic: Wainright, Ravikumar, Lafferty (2006)
• Bayesian sparse cov estimation: Rajaratnam-Massam-Carvalho (2008)
• Sparse Kronecker GGM (Matrix Normal):Allen-Tibshirani (2010),

Tsiligkaridis-Zhou-H (2012), Greenewald-H (2014)

• Covariance sparsity testing
• Sphericity test for multivariate Gaussian: Wilks (1935)
• Maximal correlation test: Moran (1980), Eagleson (1983), Jiang (2004),

Zhou (2007), Cai and Jiang (2011)
• Independence screening (Fan 2007, Rajaratnam-H, 2011)

• Inverse covariance sparsity testing
• Partial correlation hub screening (Rajaratnam-H 2012)
• Sparse prediction and regression by correlation screening (SPARCS)

(Firouzi-Rajaratnam-H 2017)
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Graphical representations of Σ or Σ−1
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Sparsity in covariance vs sparsity in inverse covariance

Sparsity models

• Sparse correlation (Σ) graphical models:
• Most correlation are zero, few marginal dependencies
• Examples: M-dependent processes, moving average (MA) processes

• Sparse inverse-correlation (K = Σ−1) graphical models
• Most inverse covariance entries are zero, few conditional dependencies
• Examples: Markov random fields, autoregressive (AR) processes, global

latent variables

• Sometimes correlation matrix and its inverse are both sparse
• Often only one of them is sparse

Refs: Meinshausen-Bühlmann (2006), Friedman (2007), Bannerjee (2008),
Wiesel-Eldar-H (2010) .
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Most physical processes are sparse in inverse covariance

Let pt(x , y) be a space-time process satisfying Poisson equation

∇2pt

∇x2
+
∇2pt

∇y 2
= W t

where W t = W t(x , y) is driving process.
For small ∆x ,∆y , p satisfies the difference equation:

X t
i,j =

(X t
i+1,j + X t

i−1,j)∆2y + (X t
i,j+1 + X t

i,j−1)∆2x −W t
i,j∆

2x∆2y

2(∆2x + ∆2y)

In matrix form, as before: [I− A]Xt = Wt and

Ω = cov−1(Xt) = σ2
W [I− A][I− A]T

A is sparse ”pentadiagonal” matrix.
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Example: 5 × 5 Poisson random field graphical model

Graph GK on IR2 corresp. K adjacency matrix

12
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Gauss-Markov random field from Poisson equation on 90×90 grid

Figure: Poisson random field. Wt = Niso + sin(ω1t)e1 + sin(ω2t)e2 (ω1 = 0.025,
ω2 = 0.02599, SNR=0dB).
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Kronecker product models: covariance representation

Σ =cov(Z) takes partitioned form

14
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Kronecker product representation of covariance matrices

Let A be a p × p matrix and B be a q × q matrix. For d = pq the Kronecker
product of A and B is the d × d matrix

A⊗ B =

 a11B · · · a1pB
...

. . .
...

ap1B · · · appB



Kronecker product properties (VanLoan-Pitsianis 1992)a:

• A⊗ B is p.d. if A and B are p.d.

• (A⊗ B)−1 = A−1 ⊗ B−1 if A and B are invertible.

• det(A⊗ B) = detA detB

• For any pq × pq matrix D

‖D− A⊗ B‖2
F = ‖R(D)− vec(A)vec(B)T‖2

F

Van Loan and Pitsianis (1993). ”Approximation with Kronecker products.” Linear algebra for large scale and real-time applications
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Kronecker product model for inverse covariance

Figure: 18 × 18 covariance matrix has 18*17/2=153 unknown cross-correlation
parameters. Kronecker product covariance model reduces this to 3 + 15 = 18
parameters.

Leads to Kronecker MLE (matrix normal): Dawid (1981),
Werner-Jansson-Stoica (2008), Tsiligkaridis-H-Zhou (2013)

Aka: matrix normal model, transposable covariance model, flip-flop covariance
16
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Sparse Kronecker product model for inverse covariance

Figure: A sparse Kronecker product covariance model reduces number of parameters
from 153 to 7 unknown correlation parameters.

Leads to KGlasso (sparse matrix normal): Allen-Tibshirani (2010), Yin-Li
(2012), Tsiligkaridis-H-Zhou (2013)
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Sparse matrix variate normal model: the KGlasso

Let Z (p × q) follow the matrix normal normal distribution with inverse
covariance matrix Ω = X⊗ Y. If

‖Ω‖0 ≤ O(pq)

then the matrix variate normal model is said to be sparse.

Maximize sparsity penalized likelihood function to estimate Ω

(X̂, Ŷ) = argminX,YJλ(X,Y)

where

Jλ(X,Y) = tr{Sn(X⊗ Y)} − log(|X| |Y|) + λX‖X‖1 + λY ‖Y‖1

Alternating minimization (flip-flop) algorithms

• Transposable regularized covariance algorithm (Allen-Tibshirani 2010)

• KGlasso algorithm (Tsiligkaridis-Zhou-H 2012)

18
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Application: windspeed prediction (10×10 patch - Arctic to Norwegian sea)

• S = 100 (10× 10 spatial grid)
• T = 8 (2 day time window)
• n = 224 (over period 2003-2007)

Tsiligkaridis, H (2013). Covariance estimation in high D via kronecker product expansions. IEEE Trans on Signal Processing
19



Multi-indexed data Kronecker models TeraLasso Conclusions

Application: NCEP 10×10 patch over Arctic to Norwegian sea

Lat (90-67.5) and long (0-22.5) is over 2.5 degree increments

20
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Application: NCEP 10×10 over Arctic to Norwegian sea

• Kronecker spectrum (left) significantly more concentrated than
eigenspectrum (right)

21
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Application: NCEP 10×10 patch over Arctic to Norwegian sea
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Application: NCEP 10×10 patch over Arctic to Norwegian sea

When use PRLS for prediction get higher prediction accuracy

• Prediction by regularized sample covariance matrix (SCM):

• Sample covariance Σ̂ = Ŝn is rank deficient
• Min-norm (Moore-Penrose inverse) used on OLS predictor

• Prediction by Kronecker approximation to covariance

• Σ̂ = Σ̂X ⊗ Σ̂Y is full rank
• Use Ω̂ directly in OLSE predictor

Tsiligkaridis and Hero (2013). Covariance estimation in high D via kronecker product expansions. IEEE Trans on Signal Processing

23
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TeraLasso: Kronecker sum covariance and inverse covariance model

Define Kronecker sum for two matrices A ∈ IRm×m, B ∈ IRn×n

A⊕ B
def
= A⊗ In + Im ⊗ B

• Kronecker sum covariance model for p = 2 (Rudelson 2017)a

Σ = A⊕ B

• Sparse Kronecker sum precision model for p = 2 (BiGlasso) (Kalaitzis
2013)b

Σ−1 = A⊕ B

• Tensor-graphical Lasso (TeraLasso): (Greenewald 2017)b

Σ−1 = Ψ1 ⊕ . . .⊕Ψp

aRudelson and Zhou (2017). Errors-in-variables models with dependent measurements. Elec Journ of Statistics

bKalaitzis, Lafferty, Lawrence, Zhou (2013). The bigraphical lasso. Int. Conf. on Machine Learning, ICML

cGreenewald, Zhou, and Hero (2017). Tensor Graphical Lasso (TeraLasso). arXiv:1705.03983.
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Properties of Kronecker sum

Kronecker sum A⊕ B
def
= A⊗ In + Im ⊗ B satisfies2

• Associativity: A1 ⊕ (A2 ⊕ A3) = (A1 ⊕ A2)⊕ A3

• Linearity in A1,A2,A3

• Distributivity:

cA(A1 ⊕ A2 ⊕ A3) + cB(B1 ⊕ B2 ⊕ B3)

= (cAA1 + cBB1)⊕ (cAA2 + cBB2)⊕ (cAA3 + cBB3)

• Eigendecomposition: if Ak = UkΛkUT
k is SVD

A1 ⊕ · · · ⊕ AK = (U1 ⊕ · · · ⊕UK )(Λ1 ⊕ · · · ⊕ ΛK )(U1 ⊕ · · · ⊕UK )T

2A.J. Laub (2005), Matrix analysis for scientists and engineers,” SIAM Press
25
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Kronecker sum vs Kronecker product

The Kronecker sum gives more flexible and sparser covariance representations

A⊕ B⊕ C A⊗ B⊗ C

64 total edges 184 total edges

26
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TeraLasso: a sparse Kronecker sum precision matrix estimator

TeraLasso estimator of Ω = Σ−1 ∈ κ]p

Ω̂ = arg min
Ω∈κ]

p

{
−log|Ω|+ tr(ŜΩ) +

K∑
k=1

ρkmk |Ψk |1,off

}

where mk =
∏

i 6=k di = p/dk and

Ŝ =
1

n

n∑
i=1

vec(ZT
i )vec(ZT

i )T

and

κ]p = {A � 0 : ∃Bk ∈ IRdk×dk s.t. A = B1 ⊕ . . .⊕ BK}

Convergent convex optimization via gradient-based descent, e.g., first order
FISTAa

aGreenewald, Zhou, and Hero (2017). Tensor Graphical Lasso (TeraLasso). arXiv:1705.03983
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TeraLasso: statistical convergence rates

(A1) Sparsity assumption card(Sk) ≤ sk , where Sk is support set of k-th
Kronecker factor Ψk .

(A2) Eigenvalues of Ω satisfy 0 < λi <∞

Theorem

(Frobenius Error Bound)a. Suppose the assumptions (A1)-(A2) hold, and that

Ω̂ is a minimizer with ρk = a 1
k

√
logd
nmk

. Then with probability at least

1− 2(K + 1)exp(−clogd)

‖Ω̂−Ω0‖ ≤
C‖Σ0‖2

λmin(Σ0)

√
(K + 1)(s + d)

logd

n mink mk

Compare to Glasso (Rothman 2008)b, (Zhou)c . If Ω ∈ κ]p then

⇒ TeraLasso statistical convergence rate is faster by a factor of mink mk .

aGreenewald, Zhou, and Hero (2017). Tensor Graphical Lasso (TeraLasso). arXiv:1705.03983.

bRothman, Bickel, Levina, Zhu (2008). Sparse permutation invariance covariance estimation, Elec. Journ. Statistics.

cZhou, Rütimann, Xi, Bülmann (2011). High dimensional covariance estiamtion based on GGMs. NIPS.
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TeraLasso: runtime comparisons for random Erdös-Renyi

• TeraLasso speedup wrt BiGlasso by 2 to 4 orders of magnitude (102 − 104)
• Teralasso is scalable to many many variables

Terralasso/iter⇒ O(
K∑

k=1

d3
k ) Glasso/itera ⇒ O(p3) = O

(
K∏

k=1

d3
k

)
aGuillot, Rajaratnam, Rolfs, Maleki, Wong (2012). Iterative thresholding algorithm for sparse inverse covariance estimation. NIPS. 29
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Application to NCEP wind speed data

10× 20 grid for western US 10× 20 grid for eastern US

30
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TeraLasso factors for spatial-only model (K = 2) (NCEP data)

Top: Eastern grid. Bottom: Western grod. Kronecker sum factors for
d1 = 10, d2 = 20
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Comparisons for spatial-only model (K = 2) (NCEP data)

Eastern grid: inverse spatial covariance estimates for d1 = 10, d2 = 20
32
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Comparisons for spatial-only model (K = 2) (NCEP data)

Western grid: inverse spatial covariance estimates for d1 = 10, d2 = 20
33
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K = 2 vs K = 3 TeraLasso for season classification (NCEP data)

Top: K = 2. Bottom: K = 3 w/ d1 = 10, d2 = 20, d3 = 5
34
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Conclusions

• Value of Kronecker covariance representations for multi-indexed arrays

• Sparse Kronecker product model for matrix normal distributions (KLasso)

• Reduces complexity of model from O(p2q2) to O(p + q)
• Bilinear non-convex objective function

• Sparse Kronecker sum model for matrix normal distributions (TeraLasso)
• Reduces complexity of model even further than KLasso
• Linear convex objective function

35
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New journal

• Publishes work that advances mathematical, 
statistical, and computational methods in the 
context of data and information sciences. We 
invite papers that present significant advances in 
this context, including applications to science, 
engineering, business, and medicine

• Editor-in-chief: Tamara G. Kolda (Sandia)
• Section Editors:

• Alfred Hero (Michigan)
• Michael I. Jordan (Berkeley)
• Robert Nowak (Wisconsin)
• Joel A. Tropp (Caltech)

• SIAM’s newest journal will begin to take author 
submissions in Spring 2018

• http://www.siam.org/journals/simods.php
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