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Multi-indexed data

Multi-indexed data

@Q\ |
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e Sample groups
= Data from mixed populations
e Variable groups g
= Data from different modalities? go
e Index groups =
= Data indexed over diverse domains® =
©
>

index groups
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2Y. Yilmaz and A. Hero, Multimodal Event Detection in Twitter Hashtag Networks, Journ. of
Signal Processing Systems, pp.1-16, 2016.

3K. Greenewald, S. Zhou, A.O. Hero, The Tensor Graphical Lasso (TeraLasso) arxiv1705.03983,
2017.



Multi-indexed data

Data cube of heterogeneous data

Multi-indexed data array:

di,....d)
- {lev v’K}lll, IK ) d= Hdk

Applications:

e predicting genome expression over time
e predicting weather from spatio-temporal climatological data
e human gait detection from low resolution video

e anomaly detection from videos of crowds

classifying fMRI brain activation image sequences



Multi-indexed data

Data cube of heterogeneous data

Multi-indexed data array:

di,....d)
- {lev v’K}lll, IK ) d= Hdk

Applications:

e predicting genome expression over time
e predicting weather from spatio-temporal climatological data
e human gait detection from low resolution video

e anomaly detection from videos of crowds

classifying fMRI brain activation image sequences

Common traits of these applications:
o the indices index over different types of domains
e the content of the arrays is complex and high dimensional

e the content is noisy and of high variability



Multi-indexed data

Data cube of heterogeneous data

Multi-indexed data array:

di,....d)
- {lev v’K}lll, IK ) d= Hdk

Applications:

e predicting genome expression over time
e predicting weather from spatio-temporal climatological data
e human gait detection from low resolution video

e anomaly detection from videos of crowds

classifying fMRI brain activation image sequences

Common traits of these applications:
o the indices index over different types of domains
e the content of the arrays is complex and high dimensional

e the content is noisy and of high variability

First order models not sufficient: much of the information lies in covariance



Multi-indexed data

Covariance representation d; = S,do = T

Y =cov(Z) takes partitioned form

2=
r A+
P | |eov(2)=
T H4
t=24 H S
L HY
vec(Z)= |
- f‘
t=p4{ H S
L v




Multi-indexed data
Measurement matrix and sample covariance

| | Sample 1 [ Sample 2 [ ... | Sample n |
Variable 1 Z11 Z1> .. Z1in
Variable 2 Zzl 222 . Zzn
Variable d Za1 Zm .. Zdn

d x n measurement matrix Z has i.i.d. columns Z; with £ = cov(Z;)

T A
Z=| : . | =z 2
Za oo o Zan



Multi-indexed data
Measurement matrix and sample covariance

| | Sample 1 [ Sample 2 [ ... | Sample n |
Variable 1 Z11 Z1> .. Z1in
Variable 2 Zzl 222 . Zzn
Variable d Za1 Zm .. Zdn

d x n measurement matrix Z has i.i.d. columns Z; with £ = cov(Z;)

T A
Z=| : . | =z 2
Za oo o Zan

d x d sample covariance matrix:

S, (n—1)" Zz—z z,-2)"

= (n=17'z(-n117)Z"



Multi-indexed data

Empirical estimation of covariance under multivariate normal model

Multivariate normal model for Z

logf (Z|E) = glogdet(z*) _n > Lo (snz*l)

Maximum likelihood covariance estimator £ = 27! =soln to convex program?

Q = argmingtr(S,Q) — cylogdet(Q)
Note that there are p = d(d +1)/2 = O(d?) unknown parameters in X

Requirements:
® n > O(d) for MLE to be unique and have finite variance
® n > O(d?) for estimator to be accurate (Biihimann&VanDeGeer, 2011)

ENE - E)}] = 0 (d°/n)

Ch =

s
|
-



Multi-indexed data

Empirical estimation of covariance under multivariate normal model

Multivariate normal model for Z

logf (Z|E) = glogdet(z*) _n > Lo (snz*l)

Maximum likelihood covariance estimator £ = 27! =soln to convex program?

Q = argmingtr(S,Q) — cplogdet(£2)
Note that there are p = d(d +1)/2 = O(d?) unknown parameters in X

Requirements:
® n > O(d) for MLE to be unique and have finite variance
® n > O(d?) for estimator to be accurate (Biihimann&VanDeGeer, 2011)

ENE - E)}] = 0 (d°/n)

If Q has structure can obtain E[||% — X||2] = O(d/n), e.g. for sparse Q

Q2 = argmingtr(S,R) — cplogdet(R) + A\||RQ|l:  (GLasso)

Ch =

s
|
-



Multi-indexed data

Many types of covariance structure have been studied

e Sparse structured covariance

e Banded covariance model: Bickel-Levina (2008)
e Sparse eigendecomposition model: Johnstone-Lu (2007)
e Stein shrinkage towards identity: Ledoit-Wolf (2005), Chen-Weisel-Eldar-H
(2010)
e Sparse inverse covariance: Gaussian graphical models
e Glasso: Freidman-Hastie,-Tibshirani(2007), Wiesel-Eldar-H (2010).
o [1-regularized logistic: Wainright, Ravikumar, Lafferty (2006)
e Bayesian sparse cov estimation: Rajaratnam-Massam-Carvalho (2008)
e Sparse Kronecker GGM (Matrix Normal):Allen-Tibshirani (2010),
Tsiligkaridis-Zhou-H (2012), Greenewald-H (2014)
o Covariance sparsity testing
e Sphericity test for multivariate Gaussian: Wilks (1935)
e Maximal correlation test: Moran (1980), Eagleson (1983), Jiang (2004),
Zhou (2007), Cai and Jiang (2011)
o Independence screening (Fan 2007, Rajaratnam-H, 2011)
e Inverse covariance sparsity testing
o Partial correlation hub screening (Rajaratnam-H 2012)

e Sparse prediction and regression by correlation screening (SPARCS)
(Firouzi-Rajaratnam-H 2017)



Multi-indexed data
Graphical representations of X or X!
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Multi-indexed data

Sparsity in covariance vs sparsity in inverse covariance

Sparsity models

e Sparse correlation (X) graphical models:

e Most correlation are zero, few marginal dependencies

e Examples: M-dependent processes, moving average (MA) processes
e Sparse inverse-correlation (K = X~!) graphical models

e Most inverse covariance entries are zero, few conditional dependencies
e Examples: Markov random fields, autoregressive (AR) processes, global
latent variables

e Sometimes correlation matrix and its inverse are both sparse
e Often only one of them is sparse

Refs: Meinshausen-Biihlmann (2006), Friedman (2007), Bannerjee (2008),
Wiesel-Eldar-H (2010) .



Multi-indexed data
Most physical processes are sparse in inverse covariance

Let p(x, y) be a space-time process satisfying Poisson equation

v2pt v2pt _ Wt
Vx2 Vy?

where W' = W*(x, y) is driving process.

For small Ay, Ay, p satisfies the difference equation:

Xt — (X + X1 ) A% + (X + XE1) A% = WEAXA?y
" 2(A2x + Az?y)

In matrix form, as before: [I — A]X" = W' and
Q = cov H(X) = opy[1 — A][l — A]”

A is sparse " pentadiagonal” matrix.



Multi-indexed data

Example: 5 x 5 Poisson random field graphical model

Graph Gk on R?

Pentadiagonal adjacency matrix

0
.o .
e .
5 . .
. . +
. e .
10 . .o .
+ ‘e .
. e +
15 . ‘e .
+ e .
20 . .
+ ‘e
25 . ‘e
0 5 10 15 20 25
nz = 105

corresp. K adjacency matrix



Multi-indexed data

Gauss-Markov random field from Poisson equation on 90x90 grid

Figure: Poisson random field. W! = N5, + sin(wit)e; + sin(w2t)ez (w1 = 0.025,
wp = 0.02599, SNR=0dB).



Kronecker models

Kronecker product models: covariance representation

Y =cov(Z) takes partitioned form

2=
r A+
P | |eov(2)=
T H4
t=24 H S
L HY
vec(Z)= |
- f‘
t=p4{ H S
L v




Kronecker models
Kronecker product representation of covariance matrices

Let A be a p X p matrix and B be a g x g matrix. For d = pg the Kronecker
product of A and B is the d x d matrix

anB a1pB
A®RB=

aplB s appB



Kronecker models
Kronecker product representation of covariance matrices

Let A be a p X p matrix and B be a g x g matrix. For d = pg the Kronecker
product of A and B is the d x d matrix

anB e a1pB
A®B= : ] :
aplB s appB
Kronecker product properties (VanLoan-Pitsianis 1992)?:

e AR Bis p.d. if A and B are p.d.
e (AR B)_1 =A"'® B! if A and B are invertible.
e det(A ® B) = detA detB
e For any pg X pg matrix D

ID — A® B2 = [R(D) - vec(A)vec(B) |

Van Loan and Pitsianis (1993). " Approximation with Kronecker products.” Linear algebra for large scale and real-time applications



Kronecker models

Kronecker product model for inverse covariance
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Figure: 18 X 18 covariance matrix has 18*17/2=153 unknown cross-correlation
parameters. Kronecker product covariance model reduces this to 3 + 15 = 18
parameters.

Leads to Kronecker MLE (matrix normal): Dawid (1981),
Werner-Jansson-Stoica (2008), Tsiligkaridis-H-Zhou (2013)

Aka: matrix normal model, transposable covariance model, flip-flop covariance



Kronecker models

Sparse Kronecker product model for inverse covariance
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Figure: A sparse Kronecker product covariance model reduces number of parameters
from 153 to 7 unknown correlation parameters.

Leads to KGlasso (sparse matrix normal): Allen-Tibshirani (2010), Yin-Li
(2012), Tsiligkaridis-H-Zhou (2013)



Kronecker models
Sparse matrix variate normal model: the KGlasso

Let Z (p x q) follow the matrix normal normal distribution with inverse
covariance matrix Q = X® Y. If

12[l0 < O(pq)
then the matrix variate normal model is said to be sparse.
Maximize sparsity penalized likelihood function to estimate Q
(X,Y) = argminy yJx(X,Y)
where
AKX Y) = tr{Sn(X @ Y)} — log(IX[ [¥Y]) + Ax[IXl1 + Av[[ Y]}

Alternating minimization (flip-flop) algorithms
e Transposable regularized covariance algorithm (Allen-Tibshirani 2010)
e KGlasso algorithm (Tsiligkaridis-Zhou-H 2012)



Kronecker models

Application: windspeed prediction (10x10 patch - Arctic to Norwegian sea)

CANADA

UNITED STATES

Region extending over latitudes 90-67.5 degrees N and longitudes0-22.5 degrees E

o 5 =100 (10 x 10 spatial grid)
e T =8 (2 day time window)
e n = 224 (over period 2003-2007)

Tsiligkaridis, H (2013). Covariance estimation in high D via kronecker product expansions. IEEE Trans on Signal Processing



Kronecker models

Application: NCEP 10x10 patch over Arctic to Norwegian sea

U component of windspeed
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Kronecker models

Application: NCEP 10x10 over Arctic to Norwegian sea

Kronecker spectrum Eigenspectrum
SG T T T T T T 40 T T T T T T
35 -48%
91%
30~
“r %.20%
30 20
151
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10 3 A)
! il
0 (M 0 mmmm
10 200 30 40 50 @60 10 20 30 40 50 60

o Kronecker spectrum (left) significantly more concentrated than
eigenspectrum (right)
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Kronecker models

Application: NCEP 10x10 patch over Arctic to Norwegian sea

KP approximation

KP Left Factor: Temporal KP Right Factor: Spatial
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Kronecker models

Application: NCEP 10x10 patch over Arctic to Norwegian sea

When use PRLS for prediction get higher prediction accuracy
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e Prediction by regularized sample covariance matrix (SCM):

e Sample covariance T = §n is rank deficient
e Min-norm (Moore-Penrose inverse) used on OLS predictor

e Prediction by Kronecker approximation to covariance

o 3= AZAX ® ZAy is full rank
o Use (Q directly in OLSE predictor

Tsiligkaridis and Hero (2013). Covariance estimation in high D via kronecker product expansions. IEEE Trans on Signal Processing

bl



Teralasso

Teralasso: Kronecker sum covariance and inverse covariance model

Define Kronecker sum for two matrices A € R™™, B € R"*"

AcBX Agl, 41,08

o Kronecker sum covariance model for p = 2 (Rudelson 2017)?

>=A%B

e Sparse Kronecker sum precision model for p = 2 (BiGlasso) (Kalaitzis
2013)°
I '=A9B

e Tensor-graphical Lasso (Teralasso): (Greenewald 2017)°

rl=wvg.aw,

?Rudelson and Zhou (2017). Errors-in-variables models with dependent measurements. Elec Journ of Statistics
bKaIaitzis, Lafferty, Lawrence, Zhou (2013). The bigraphical lasso. Int. Conf. on Machine Learning, ICML

€Greenewald, Zhou, and Hero (2017). Tensor Graphical Lasso (TeraLasso). arXiv:1705.03983.

24



Teralasso

Properties of Kronecker sum

Kronecker sum A ® B d:ef A1, + 1, ® B satisfies?

e Associativity: A1 @ (A2 ® A3) = (A1 ® A2) @ A

2A.J. Laub (2005), Matrix analysis for scientists and engineers,” SIAM Press
25
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Properties of Kronecker sum
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Teralasso
Properties of Kronecker sum

Kronecker sum A ® B d:ef A1, + 1, ® B satisfies?

e Associativity: A1 @ (A2 ® A3) = (A1 ® A2) @ A
e Linearity in Ay, Az, A3
o Distributivity:

ca(A1 ® A2 ® A3) + cg(B1 © B2 @ Bs)
= (caA1 + cgB1) @ (caA2 + csB2) @ (caAs3 + cB3)

2A.J. Laub (2005), Matrix analysis for scientists and engineers,” SIAM Press
25



Teralasso
Properties of Kronecker sum

Kronecker sum A ® B d:ef A1, + 1, ® B satisfies?

e Associativity: A1 @ (A2 ® A3) = (A1 ® A2) @ A
e Linearity in Ay, Az, A3
o Distributivity:

ca(A1 ® A2 ® A3) + cg(B1 © B2 @ Bs)
= (caA1 + cgB1) @ (caA2 + csB2) @ (caAs3 + cB3)

o Eigendecomposition: if Ay = Uk/\kUkT is SVD

A BA=Ui® U)M@ AU & - @ Uk)

2A.J. Laub (2005), Matrix analysis for scientists and engineers,” SIAM Press
25



Teralasso

Kronecker sum vs Kronecker product

The Kronecker sum gives more flexible and sparser covariance representations

Kronecker Sum Kronecker Product

AeBaC ARB®C
64 total edges 184 total edges

26



Teralasso

Teralasso: a sparse Kronecker sum precision matrix estimator

TeralLasso estimator of Q = X! € /sf,

Q = arg ming { log|Q| + tr(5Q) + Zpkmk|‘l1k|1 off}
k=1

where mi =[], di = p/dk and

EZ vec(Z] Yvee(Z])"

S

and
kh={A>0:3B e R%* % st. A=B1®...®Bg}

Convergent convex optimization via gradient-based descent, e.g., first order
FISTA?®

3Greenewald, Zhou, and Hero (2017). Tensor Graphical Lasso (TeralLasso). arXiv:1705.03983
27



Teralasso

Teralasso: statistical convergence rates

(A1) Sparsity assumption card(Sk) < sk, where Sy is support set of k-th
Kronecker factor Wy.

(A2) Eigenvalues of Q satisfy 0 < \; < oo

Theorem

(Frobenius Error Bound)’. Suppose the assumptions (A1)-(A2) hold, and that

logd
nmy

2 is a minimizer with px = aX . Then with probability at least

1 —2(K + 1)exp(—clogd)

. C||):o||2\/ logd
— g =Rl e
1€ QO”*Amin(zo) (K+1)(s+d)

Compare to Glasso (Rothman 2008)°, (Zhou)®. If Q € &% then

= Teralasso statistical convergence rate is faster by a factor of min, my.

3Greenewald, Zhou, and Hero (2017). Tensor Graphical Lasso (Teralasso). arXiv:1705.03983.
bRothman‘ Bickel, Levina, Zhu (2008). Sparse permutation invariance covariance estimation, Elec. Journ. Statistics.
€Zhou, Riitimann, Xi, Biilmann (2011). High dimensional covariance estiamtion based on GGMs. NIPS.

28



Teralasso

Teralasso: runtime comparisons for random Erdos-Renyi

K D dy, n TeraLasso Runtime (s) BiGLasso Runtime (s)
2 100 10 10 0131 34
2 625 25 10 0147 6.81
2 2500 50 10 0272 161
2 5625 75 10 L0401 1690
2 10* 100 10 0664

2 2.5 x 10° 500 10 1.62

2 10¢ 1000 10 232

2 4 % 10 2000 10 427

3 10° 100 10 3.52 NA
3 8x10° 200 10 11.2 NA
3| 1.25 x10% 500 10 326 NA
3 1 x 10° 1000 10 70.0 NA
4 10% 10 10 281 NA
4 1.6 x 10° 20 10 649 NA
4 | 6.25 x 10° 50 10 10.8 NA
4 | 1.00 x 10? 178 10 88.4 NA
5 | 1.16 x 107 65 10 124 NA

e Teralasso speedup wrt BiGlasso by 2 to 4 orders of magnitude (102 — 10%)
e Teralasso is scalable to many many variables
K K
Terralasso/iter = O(Z d?) Glasso/iter* = O(p’) = O H di
k=1 k=1

2Guillot, Rajaratnam, Rolfs, Maleki, Wong (2012). Iterative thresholding algorithm for sparse inverse covariance estimation. NIPS. PYe



Teralasso

Application to NCEP wind speed data

10 x 20 grid for western US

g [

10 x 20 grid for eastern US
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Latitude Factor Estimate, n=50
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Teralasso

Teralasso factors for spatial-only model (K = 2) (NCEP data)

Longitude Factor Estimate, n=50
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Top: Eastern grid. Bottom: Western grod. Kronecker sum factors for

dl = 10,d2 =20
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Shrinkage Estimate, n=1
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Comparisons for spatial-only model (K = 2) (NCEP data)
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ralasso

Comparisons for spatial-only model (K = 2) (NCEP data)
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Teralasso

vs K = 3 Teralasso for season classification (NCEP data)
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Conclusions

Conclusions

e Value of Kronecker covariance representations for multi-indexed arrays

e Sparse Kronecker product model for matrix normal distributions (KLasso)
e Reduces complexity of model from O(p?q?) to O(p + q)
e Bilinear non-convex objective function

e Sparse Kronecker sum model for matrix normal distributions (Teralasso)

e Reduces complexity of model even further than KLasso
e Linear convex objective function

25



Conclusions
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