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Theme

This talk is about the interplay between global and local structure in
statistical learning. Two different settings:

Stochastic convex optimization

Shape constrained estimation
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Outline

I. Adaptivity and geometry in optimization
How hard is it to optimize this function?

[I. Graph structured signal denoising
What is behavior of shape constraints on graphs?

[ll. Prediction rule reshaping
How can shape constraints be used with ML algorithms?
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I: Geometry and adaptivity in optimization

Heard around the Chicago Statistics lunch table:
“Computer scientists are pessimists”

“l don’t care about minimax”

The pessimism is about worst-case thinking, which is overly
conservative.

What are alternatives?



Per-Instance Complexity

minimize f(x)
subjectto x € C
f convex, C closed and convex.

Algorithms get noisy gradients
of fat T query points.

Example: logistic regression or
SVMs for large-scale datasets.

Question: How hard is it to optimize this function f?
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Per-Instance Complexity

How hard is it to optimize this function?
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Perpective

Stochastic gradient descent central to modern machine learning
Our work shows that SGD is adaptive on a very fine scale

Making sense of this requires a break with traditional formulations

A complexity class with a single member doesn’t make sense
using standard notions

Ideas bridging optimization and statistics



Traditional adaptivity

-

58



Superadaptivity
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Minimax complexity of convex optimization

F class of convex functions on a convex set C ¢ RY.

O a stochastic first-order oracle: query (f, x) € F x C, returns
Z € RY, with mean f'(x) € df(x).

A7 class of all optimization methods that make T queries to O.

Minimax complexity

Rr(F) = A|€nfflr ?gjg Elerr(f, A)] = A|€rL1:T ?gﬁ) E|f(x741) — ;ch f(x)

Nemirovski and Yudin (1983)
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Minimax complexity for convex optimization

Known that

Rr(F.)=<1/T  strongly convex functions
Rr(F.)=1/VT  Lipschitz functions

Agarwal et al. (2010) extend analysis to d-dimensional case, also sparse setting
Raginsky and Rakhlin (2011) information theoretic proof technique; parallels minimax lower bounds in statistics
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Shortcomings of the framework?

Ignores cost of computing the gradient — O(1)
Does not allow for (decreasing) bias

Does not account for computations on past gradients, e.g.,
quasi-Newton algorithms

Too pessimistic and “global”
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Per-instance complexity

What about a particular instance?

<1/T? =1/T? < 1/VT?
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Local minimax complexity

Minimax complexity

Rr(F) = inf sup Elerr(f,A
r(F) = inf sup [E[er(f, A)

Local minimax complexity

Ry (f; F) =sup inf max [Elerr(h A
T( ) ge]e Ac At he{f,g} [ ( )]

T. Cai and M. Low, “A framework for estimation of convex functions,” Stat. Sinica, 2015
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Why is this interesting?

Local minimax complexity

Rr(f; F) =sup inf max [Elerr(h A
T ) geﬁ Ac At he{f,g} [ ( )]

To show this is a reasonable complexity measure, need to:

1. Relate it to geometry of the function
2. Show it agrees with rates for known classes
3. Demonstrate that beating it is impossible

4. Give an algorithm that achieves it
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Definitions

Set of minimizers — X{ = argmin, . f(x)
Error function err(x, f) = infyexx |x — y||
Minima separation  d(f,g) = infxcx; yex; (X — y| for f,g e F

Subgradient gap  k(f,g) = supyec IIf'(x) — 9'(X)||
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Modulus of continuity

Two dissimilarity measures between f and g:

d(f,g) distance between minimizers
k(f,g) largest separation between subgradients

Modulus of continuity of d with respect to « at function f:

we(e) = sup {d(f,9) : k(f,g) < e}
geF
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Modulus of continuity

at se

) =sup{ i e ylsy €I <}
f

19/58



Modulus of continuity

at se
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Modulus of continuity

at se

) =sup{ i e ylsy € CIF0) <}
f

x> x<o
5IX1P x>0

f = —|x|¢ f =
(x) = ~Ix] () {
wi(e) = /(@1 wi(e) = '/ (@VB—1)
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Modulus characterizes local minimax

Theorem. For all sufficiently large T,

(7)1 3

Proof works for several distances d(f, g)

For f(x) = c|x — x*|*, x-error decays as O(T~'/2(e=1),

f-error decays as O(T—/2(e=1))

Agrees with known rates for uniformly convex functions

Donoho and Liu, “Geometrizing rates of convergence: I, I, llI”
louditski and Nesterov, “Primal-dual subgradient methods for minimizing uniformly convex functions” (2014)
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Per-instance complexity

=1/T3/2 =1/T = 1/T?/3
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Superefficiency

In statistics, Fisher information is the benchmark for efficiency of
(parametric) estimators

The MLE satisfies v/n(6, — 6) ~ N(0, I(6)~1)

LeCam-Hajek: If an estimator satisfies ﬂgn —60) ~ N(0,v(0))
with v(0) < 1/1(8), then it must perform poorly at a nearby point
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Superefficiency in convex optimization

Suppose an algorithm A € Ay outperforms the modulus:

Eferr(Xa, f) < 61wy <%> ,

with 67 — 0, e’ 67 — oco. Then exists functions with x(f, gr) — 0 and

liminf ‘EQT err(?AugT)

7 gy (oy/T o107

> 0.

Thus wy can be viewed as analogue of Fisher information for
stochastic convex optimization
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A superadaptive algorithm: Binary search

Given a budget of T queries:

Query midpoint T/log T times
Average the noisy gradients
If result is positive, go left; otherwise right

Step is correct if derivative bigger than C/v/T.
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Binary search algorithm

Input: T,r
Initialize: (ag, bo), E = |rlog T|, To = | T/E],
fore=1,...,E do:
Query Xe = (8¢ + be)/2 for Ty times to get Zt(e) fort=1,..., Ty
Calculate the average 2%) = £330, z®
If Z;:) > 0, set (8et1, bet1) = (e, Xe)
It 28 < 0, set (et 1, bes1) = (Xe, be)
end
Output: xg
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Binary search achieves the benchmark

Theorem. With probability at least 1 — ¢ and for large enough T,

P g
inf —x|<C —
g ey 1= 0 ()

where the term C hides a dependence on log T and log(1/6).

Superadaptation clearly seen in simulations
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Blockwise SGD is superadaptive in d > 1

Can’t (easily) do binary search in higher dimension

Nesterov’s blockwise SGD is extremely simple:

© Divide computational budget into equal chunks
@ Run SGD in each block with fixed step size
@ Halve the step size in each block

Superadaptive (up to log factors)

louditski and Nesterov, “Deterministic and stochastic primal-dual subgradient algorithms for uniformly convex minimization”
(2014)
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Other settings Recent results of Yuancheng Zhu

‘ zeroth-order oracle first-order oracle
fixed/random design regression 1st-order regression
active design | Oth-order optimization optimization

R.:(n,f) =su inf - max [Eperr.(Ah
1) ge]rcg AcAn; heltg) (A.h)
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See also...

J. Duchi and F. Ruan (2017), “Local asymptotics for stochastic
optimization: Optimality, constraint identification, and dual averaging”

Local minimax for optimization analogous to Hajek-Le Cam

Based on Nesterov’s dual averaging

W. Su and Y. Zhu (2018), “Statistical inference for online learning and
stochastic approximation via hierarchical incremental gradient
descent”

Inference (confidence intervals) for SGD

Hierarchical design, computationally “free”
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Part I: Summary

Framework for assessing complexity of minimizing individual
convex functions.

Close connections to new and old statistical theory

Challenge: More natural definition?
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Il: Graph structured signals

Estimation and testing of signals that respect the structure of a
network or graph in some way.

We formulate a form of isotonic regression on graphs, and study
the risk properties of the least squares estimator.

Trend filtering on graphs, Wang et al., (2014)
Normal means on graphs, Arias-Castro et al., (2008, 2014), Sharpnack (2013)

Lipschitz learning on graphs, Kyng et al., (2015)
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Il: Graph structured signals

Sabyasachi Chatterjee
uluc
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Flows on trees

Imagine a fluid flowing into a node and dividing among the children —
possibly with some leakage.

We observe a noisy measurement X; = u; + ¢; at each node i
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Example: Statistical code profiling (gprof)

45467136

Measures time/storage
used in different parts of
execution tree

Instruments compiled
code to monitor
performance
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Denoising flows

Graph structured form of isotonic regression.

» What is the behavior of the least-squares estimator?
» How does it depend on the structure of the tree?
» What is the fundamental limit of flow estimation?

Isotonic regression well studied: Ayer et al. (1955), Brunk (1955), van Eeden (1958), Birgé and Massart (1993), Donoho
(1991), van de Geer (1990), Zhang (2002), Chatterjee et al. (2013), ...
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The isotonic case

For isotonic regression, pq > --- > up, risk of LSE scales as

1 n R 2 _ 2/3 -
S e e T
i=1

Matches the minimax rate.

C.H. Zhang (2002)
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LSE for tree flows: Logarithmic depth

Theorem. Let T, be a sequence of trees with n nodes and depth hj,.

For any flow p € F(T,), the LSE has risk

2 3 3/2
lElﬁu\2<C<g ol 000, ciesull o) )

where 11 is the flow at the root.
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LSE for tree flows: Logarithmic depth

Theorem. Let T, be a sequence of trees with n nodes and depth hj,.

For any flow . € F(Tp,), the LSE has risk

’
—E||fi— pl? <
SElE =l < C( - -

o(2)

where 14 is the flow at the root.

o2hp(1 + log n)3 L Ok vhn(1 + log n)3/2>
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LSE for tree flows: Logarithmic depth

Theorem. Let T, be a sequence of trees with n nodes and depth hj,.

For any flow p € F(T,), the LSE has risk

1 “hn(1 + ° hna(1 +1 3/2
,,Elﬁ—u|2<c<" A(110g) oy VPt +log)

_O<n /h\@)

where p1 is the flow at the root.
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Hardest trees?

Flow estimation is easier for stars than for paths

O(1/n) vs. O(n~2/3)

Is the path the “hardest” flow estimation problem?

Reminiscent of Tan, Anandkumar and Willsky, “Learning Gaussian tree models” (2010)
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Many long paths 7,
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Lower bounds for 7, ,

1/3
\

exponent

T T T
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path length parameter «
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Lower bounds for 7,, and LSE

1/3
\

exponent

0 1/3 1/2 1

path length parameter «
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Proof techniques

Result

Technique

Upper bound for LSE; shallow trees
Minimax lower bound; shallow trees
Lower bound for LSE; shallow trees

Minimax lower bound; monotone seqs
Minimax lower bound; deep trees, a <
Minimax lower bound; deep trees, o >
Tightness of lower bound, o > 1

Tightness of LSE upper bound, o > 1

Isotonic upper bound for LSE; deep trees
Simplex upper bound for LSE; deep trees

W= W=

Gaussian supremum
Fano’s lemma
Gaussian widths
Statistical dimension
Chaining

Assouad’s lemma
Minimax for isotonic
Fano’s lemma

LSE on net
Gaussian widths
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Proof techniques: GP suprema
For a fixed flow n we define the Gaussian supremum function
t2
(1) = \E( sup  (Z,v— m) -5

veEF:||lv—p| <t

If t* > 0 satisfies f,(t*) < 0 then
~ C *2 2
R(M,u)gﬁmax (t o )

We bound f,(t) by Dudley’s entropy integrals (chaining)

2t
\E( sup <z,uw>) <c| V1og N(e, Bi(1)) de

veF:||lv—p| <t

which requires good upper bounds on log covering numbers.

Sourav Chatterjee (2014)
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Covering number sketch: Flows and leaks

A flow is determined by its leaks. Let uq < V.
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Covering number sketch: Flows and leaks

A flow is determined by its leaks. Let ¢ < V.
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Random construction

Given a flow pu, define a random flow F by its leaks:

Ve;  with probability E’(\f)

“F) = | o
0 with probability 1 — Zﬁ,-(u).

Take convex combination of m random flows:

1
ﬁm:E(HJF“'JrFm)
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Recursion

Since the node flows are negatively correlated, can show

Var(@y) < Y. Var(fy)

ueSubtree(v)

Ellz™ — pl? = Y E@ —m)? = Y Var(z)
i

]

< > dVar(f])
i
h> Var(f]")
i

V2h
m

IN
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Covering number

Random construction thus gives a V2h/m covering. By simple
combinatorics,

V2h

2 <1 + Iog<1 + CZ;D

log N(e, Fy) <

Maurey’s argument” (van der Vaart and Wellner, 1996)
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Intuition for the gap

General minimax lower bound for isotonic regression:

2\ 2/3
inf sup E||z — )2 > Cmin {02, Ve, <U> }

Popp <V n

When V is small, LSE not
minimax—itrivial estimator
1 = 0 achieves lower
bound

In “narrow” tree regime
a ~ 1/3, some of the root
flows will be small

A lasso-style estimator to
zero entire paths?
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Il: Summary

Flows: Tree structured generalization of isotonic regression
Surprise: LSE is not minimax rate optimal

Shape constraints in graph/network settings largely unexplored

S. Chatterjee and JL, “Denoising flows on trees,” IEEE
Trans. Info. Theory, 2018
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lll: Prediction rule reshaping

Imposing shape constraints on “black box” prediction rules

Reshaping random forests

Matt Bonakdarpour Rina Foygel Barber
UChicago/Yale UChicago

Related work: Chernozhukov et al., 2010, Gonzélez et al., 2015, Gupta et al., 2016, You et al., 2017, Amos et al., 2017 49/58



Motivation

Shape constraints are natural in applications

House price assumed to be decreasing function of crime rate
(all other predictors held constant)

Not easily incorporated into popular machine algorithms

We study different approaches to reshaping prediction rules
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Prediction rule reshaping

Suppose that7:RY — Risa prediction rule estimated from data
(e.g., regression or classification)

Let S be a class of functions that satisfy a set of shape contraints.
For example

of Sy

a—xj >0 (monotonic), j € Ry
ﬁ <0 (concave), jeR
(9ij = ) j n

Reshaping is the infinite dimensional optimization

min ||f — 7|
fes
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A finite optimization problem

Let S = (Sv)ver be candidate shape constraints, R C [d]
Let D, = {x1,..., Xn} be set of test points

For v € R, define the n x n prediction matrix F¥ = [l?,‘,’,]

o~

y ~
i = F(Xi1, Xi2s ooy Xiv—1, Xir vy Xiv 15 - - -5 Xid)
~yn 5
Fi () - f(Xf,1 ’ XI',27 e 7XI',V717 : 7Xf,V+1 3 Xi,d)'

where x; , ranges over all n values of v-th predictor.
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A finite optimization problem

Reshaped predictions fs obtained by projecting matrix of predicted
values onto shape constraints:

Fs= argmin Y |FY - FY|2
F=(F")ver ver
suchthat F € S,, foreachveR
diag(F") = diag(F"), forall v,w € R

Reshaped predictions: 5 5
fs = diag(Fg)
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Intersecting isotonic regressions

Suppose constraints are monotonicity contraints

Reshaping leads to “intersecting isotonic regressions” due to
consistency constraints diag(F") = diag(F")

A generalization of PAVA solves this efficiently
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Reshaping random forests

© Grow the tree in the usual way
@ Reshape the leaf values to enforce monotonicity
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lllustration

41

T3 T9 >3
To > 1 U3
1
T2 IQS?)
22 <1 0y ly
r1 <2 T > 2 r <1 x> 1
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lllustration

xo > 1 3

T1

T2

<2 1z >2 r; <1 x> 1

Exact estimator, 6 constraints:

/‘LZZ S ,ufgs H@] S ,U'f'11 ,LL@] S ,ul’gs M€3 S ,LLr1,

:u’eg S Hl’gs MZ;; S ,ufg
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lllustration

a9 > 1 %

T1

T 1z <3

xy <1 0y Ly

<2 x1>2 <1 x3>1

Over-constrained estimator, all 9 pairwise constraints

/~I/Z1 é,u’ﬁs ,LL£1 SMfzi ,LL[] SM@"”
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Reference

“Prediction rule reshaping,” Matt Bonakdarpour, Sabyasachi
Chatterjee, Rina Foygel Barber, and JL, arXiv:1805.06439

(to be presented at ICML this summer)
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Summary

Interplay between global and local structure:

Stochastic convex optimization
Signal denoising on trees

Reshaping prediction rules

Merci beaucoup d’avoir m’écouteé!
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