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Theme

This talk is about the interplay between global and local structure in
statistical learning. Two different settings:

• Stochastic convex optimization

• Shape constrained estimation
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Outline

I. Adaptivity and geometry in optimization

I How hard is it to optimize this function?

II. Graph structured signal denoising

I What is behavior of shape constraints on graphs?

III. Prediction rule reshaping

I How can shape constraints be used with ML algorithms?
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I: Geometry and adaptivity in optimization

Heard around the Chicago Statistics lunch table:

“Computer scientists are pessimists”

“I don’t care about minimax”

The pessimism is about worst-case thinking, which is overly
conservative.

What are alternatives?
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Per-Instance Complexity

minimize f (x)

subject to x ∈ C

f convex, C closed and convex.

Algorithms get noisy gradients
of f at T query points.

Example: logistic regression or
SVMs for large-scale datasets.

Question: How hard is it to optimize this function f?
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Per-Instance Complexity

• How hard is it to optimize this function?
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Sabyasachi Chatterjee John Duchi Yuancheng Zhu
UIUC Stanford UPenn
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Perpective

• Stochastic gradient descent central to modern machine learning

• Our work shows that SGD is adaptive on a very fine scale

• Making sense of this requires a break with traditional formulations

I A complexity class with a single member doesn’t make sense
using standard notions

• Ideas bridging optimization and statistics
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Traditional adaptivity

F2

F1

F0

9 / 58



Superadaptivity
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Minimax complexity of convex optimization

• F class of convex functions on a convex set C ⊂ Rd .

• O a stochastic first-order oracle: query (f , x) ∈ F × C, returns
Z ∈ Rd , with mean f ′(x) ∈ ∂f (x).

• AT class of all optimization methods that make T queries to O.

Minimax complexity

RT (F) = inf
A∈AT

sup
f∈F

E
[
err(f ,A)

]
= inf

A∈AT
sup
f∈F

E
[
f (xT+1)− inf

x∈C
f (x)

]

Nemirovski and Yudin (1983)
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Minimax complexity for convex optimization

Known that

RT (Fsc) � 1/T strongly convex functions

RT (FL) � 1/
√

T Lipschitz functions

Agarwal et al. (2010) extend analysis to d-dimensional case, also sparse setting
Raginsky and Rakhlin (2011) information theoretic proof technique; parallels minimax lower bounds in statistics
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Shortcomings of the framework?

• Ignores cost of computing the gradient – O(1)

• Does not allow for (decreasing) bias

• Does not account for computations on past gradients, e.g.,
quasi-Newton algorithms

• Too pessimistic and “global”
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Per-instance complexity

What about a particular instance?

� 1/T? � 1/T ? � 1/
√

T ?
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Local minimax complexity

Minimax complexity

RT (F) = inf
A∈AT

sup
f∈F

E
[
err(f ,A)

]

Local minimax complexity

RT (f ;F) = sup
g∈F

inf
A∈AT

max
h∈{f ,g}

E
[
err(h,A)

]

T. Cai and M. Low, “A framework for estimation of convex functions,” Stat. Sinica, 2015
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Why is this interesting?

Local minimax complexity

RT (f ;F) = sup
g∈F

inf
A∈AT

max
h∈{f ,g}

E
[
err(h,A)

]
To show this is a reasonable complexity measure, need to:

1. Relate it to geometry of the function

2. Show it agrees with rates for known classes

3. Demonstrate that beating it is impossible

4. Give an algorithm that achieves it
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Definitions

Set of minimizers X ∗f = arg minx∈C f (x)

Error function err(x , f ) = infy∈X ∗f ‖x − y‖

Minima separation d(f ,g) = infx∈X ∗f , y∈X ∗g ‖x − y‖ for f ,g ∈ F

Subgradient gap κ(f ,g) = supx∈C ‖f ′(x)− g′(x)‖
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Modulus of continuity

Two dissimilarity measures between f and g:

d(f ,g) distance between minimizers
κ(f ,g) largest separation between subgradients

Modulus of continuity of d with respect to κ at function f :

ωf (ε) = sup
g∈F

{
d(f ,g) : κ(f ,g) ≤ ε

}
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Modulus of continuity

f (x)

g(x)

flat set

f ′(x)

g′(x)
ε

ω(ε; f )

ωf (ε) = sup
{

inf
x∈X ∗f

|x − y | : y ∈ C, |f ′(y)| < ε

}
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Modulus of continuity

f (x)

g(x)

flat set

f ′(x)

g′(x)
ε

ω(ε; f )

ωf (ε) = sup
{

inf
x∈X ∗f

|x − y | : y ∈ C, |f ′(y)| < ε

}

f (x) =
1
α
|x |α

ωf (ε) = ε1/(α−1)
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Modulus of continuity

f (x)

g(x)

flat set

f ′(x)

g′(x)
ε

ω(ε; f )

ωf (ε) = sup
{

inf
x∈X ∗f

|x − y | : y ∈ C, |f ′(y)| < ε

}

f (x) =
1
α
|x |α f (x) =

{
1
α |x |

α x ≤ 0
1
β |x |

β x > 0

ωf (ε) = ε1/(α−1) ωf (ε) = ε1/(α∨β−1)
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Modulus characterizes local minimax

Theorem. For all sufficiently large T ,

C1 ωf

(
σ√
T

)
≤ RT (f ;F) ≤ C2 ωf

(
σ√
T

)
.

• Proof works for several distances d(f ,g)

• For f (x) = c|x − x∗|α, x-error decays as O(T−1/2(α−1)),
f -error decays as O(T−α/2(α−1))

• Agrees with known rates for uniformly convex functions

Donoho and Liu, “Geometrizing rates of convergence: I, II, III”
Iouditski and Nesterov, “Primal-dual subgradient methods for minimizing uniformly convex functions” (2014)
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Per-instance complexity

� 1/T 3/2 � 1/T � 1/T 2/3
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Superefficiency

• In statistics, Fisher information is the benchmark for efficiency of
(parametric) estimators

• The MLE satisfies
√

n(θ̂n − θ) N(0, I(θ)−1)

• LeCam-Hájek: If an estimator satisfies
√

(θ̃n − θ) N(0, v(θ))
with v(θ)� 1/I(θ), then it must perform poorly at a nearby point
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Superefficiency in convex optimization

Suppose an algorithm A ∈ AT outperforms the modulus:

Ef err(x̂A, f ) ≤ δT ωf

(
σ√
T

)
,

with δT → 0, eT δT →∞. Then exists functions with κ(f ,gT )→ 0 and

lim inf
T→∞

EgT err(x̂A,gT )

ωgT

(
σ
√

T−1 log(1/δT )

) > 0.

Thus ωf can be viewed as analogue of Fisher information for
stochastic convex optimization
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A superadaptive algorithm: Binary search

Given a budget of T queries:

• Query midpoint T/ log T times

• Average the noisy gradients

• If result is positive, go left; otherwise right

• Step is correct if derivative bigger than C/
√

T .
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Binary search algorithm

Input: T , r
Initialize: (a0,b0), E = br log T c, T0 = bT/Ec,
for e = 1, . . . ,E do:

Query xe = (ae + be)/2 for T0 times to get Z (e)
t for t = 1, . . . ,T0

Calculate the average Z̄ (e)
T0

= 1
T0

∑T0
t=1 Z (e)

t

If Z̄ (e)
T0

> 0, set (ae+1,be+1) = (ae, xe)

If Z̄ (e)
T0
≤ 0, set (ae+1,be+1) = (xe,be)

end
Output: xE
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Binary search achieves the benchmark

Theorem. With probability at least 1− δ and for large enough T ,

inf
x∈X ∗f

|xT − x | ≤ C̃ωf

(
σ√
T

)
where the term C̃ hides a dependence on log T and log(1/δ).

Superadaptation clearly seen in simulations.
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Blockwise SGD is superadaptive in d > 1

• Can’t (easily) do binary search in higher dimension

• Nesterov’s blockwise SGD is extremely simple:

1 Divide computational budget into equal chunks

2 Run SGD in each block with fixed step size

3 Halve the step size in each block

• Superadaptive (up to log factors)

Iouditski and Nesterov, “Deterministic and stochastic primal-dual subgradient algorithms for uniformly convex minimization”
(2014)
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Other settings Recent results of Yuancheng Zhu

zeroth-order oracle first-order oracle

fixed/random design regression 1st-order regression

active design 0th-order optimization optimization

R∗,†(n, f ) = sup
g∈F

inf
A∈An,†

max
h∈{f ,g}

Eh err∗(A,h)
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See also...

J. Duchi and F. Ruan (2017), “Local asymptotics for stochastic
optimization: Optimality, constraint identification, and dual averaging”

• Local minimax for optimization analogous to Hájek-Le Cam

• Based on Nesterov’s dual averaging

W. Su and Y. Zhu (2018), “Statistical inference for online learning and
stochastic approximation via hierarchical incremental gradient
descent”

• Inference (confidence intervals) for SGD

• Hierarchical design, computationally “free”
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Part I: Summary

• Framework for assessing complexity of minimizing individual
convex functions.

• Close connections to new and old statistical theory

• Challenge: More natural definition?
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II: Graph structured signals

• Estimation and testing of signals that respect the structure of a
network or graph in some way.

• We formulate a form of isotonic regression on graphs, and study
the risk properties of the least squares estimator.

Trend filtering on graphs, Wang et al., (2014)
Normal means on graphs, Arias-Castro et al., (2008, 2014), Sharpnack (2013)
Lipschitz learning on graphs, Kyng et al., (2015)
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II: Graph structured signals

Sabyasachi Chatterjee
UIUC
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Flows on trees

Imagine a fluid flowing into a node and dividing among the children –
possibly with some leakage.

6

3 2

1 2 2 0

1
2

1
3

We observe a noisy measurement Xi = µi + εi at each node i
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Example: Statistical code profiling (gprof)

• Measures time/storage
used in different parts of
execution tree

• Instruments compiled
code to monitor
performance

34 / 58



Denoising flows

• Graph structured form of isotonic regression.

I What is the behavior of the least-squares estimator?

I How does it depend on the structure of the tree?

I What is the fundamental limit of flow estimation?

Isotonic regression well studied: Ayer et al. (1955), Brunk (1955), van Eeden (1958), Birgé and Massart (1993), Donoho
(1991), van de Geer (1990), Zhang (2002), Chatterjee et al. (2013), ...
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The isotonic case

For isotonic regression, µ1 ≥ · · · ≥ µn, risk of LSE scales as

1
n

n∑
i=1

E(µi − µ̂i)
2 ≤ C

(
σ2(µ1 − µn)

n

)2/3

= O
(
n−2/3)

Matches the minimax rate.

C.H. Zhang (2002)
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LSE for tree flows: Logarithmic depth

Theorem. Let Tn be a sequence of trees with n nodes and depth hn.
For any flow µ ∈ F(Tn), the LSE has risk

1
n

E‖µ̂− µ‖2 ≤ C

(
σ2hn(1 + log n)3

n
+
σµ1
√

hn(1 + log n)3/2

n

)

where µ1 is the flow at the root.
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LSE for tree flows: Logarithmic depth

Theorem. Let Tn be a sequence of trees with n nodes and depth hn.
For any flow µ ∈ F(Tn), the LSE has risk

1
n

E‖µ̂− µ‖2 ≤ C

(
σ2hn(1 + log n)3

n
+
σµ1
√

hn(1 + log n)3/2

n

)

= Õ
(

hn

n

)
where µ1 is the flow at the root.
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LSE for tree flows: Logarithmic depth

Theorem. Let Tn be a sequence of trees with n nodes and depth hn.
For any flow µ ∈ F(Tn), the LSE has risk

1
n

E‖µ̂− µ‖2 ≤ C

(
σ2hn(1 + log n)3

n
+
σµ1
√

hn(1 + log n)3/2

n

)

= Õ
(

hn

n
+
µ1
√

hn

n

)
where µ1 is the flow at the root.
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Hardest trees?

• Flow estimation is easier for stars than for paths

Õ(1/n) vs. O(n−2/3)

• Is the path the “hardest” flow estimation problem?

Reminiscent of Tan, Anandkumar and Willsky, “Learning Gaussian tree models” (2010)
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Many long paths Tn,α

· · ·

· · ·

...
...

...

· · ·

· · ·

nα

n1−α
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Lower bounds for Tn,α

exponent

0 1/3 1/2 1

0
1/

3
1/

2

path length parameter α
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Lower bounds for Tn,α and LSE

exponent

0 1/3 1/2 1

0
1/

3
1/

2

path length parameter α
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Proof techniques

Result Technique

Upper bound for LSE; shallow trees Gaussian supremum

Minimax lower bound; shallow trees Fano’s lemma

Lower bound for LSE; shallow trees Gaussian widths

Isotonic upper bound for LSE; deep trees Statistical dimension

Simplex upper bound for LSE; deep trees Chaining

Minimax lower bound; monotone seqs Assouad’s lemma

Minimax lower bound; deep trees, α ≤ 1
3 Minimax for isotonic

Minimax lower bound; deep trees, α ≥ 1
3 Fano’s lemma

Tightness of lower bound, α ≥ 1
3 LSE on net

Tightness of LSE upper bound, α ≥ 1
3 Gaussian widths
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Proof techniques: GP suprema

For a fixed flow µ we define the Gaussian supremum function

fµ(t) := E
(

sup
ν∈F :‖ν−µ‖≤t

〈Z , ν − µ〉
)
− t2

2
.

If t∗ > 0 satisfies fµ(t∗) ≤ 0 then

R(µ̂, µ) ≤ C
n

max
(

t∗2, σ2
)
.

We bound fµ(t) by Dudley’s entropy integrals (chaining)

E
(

sup
ν∈F :‖ν−µ‖≤t

〈Z , ν − µ〉
)
≤ C

∫ 2t

0

√
log N(ε,Bt (µ)) dε

which requires good upper bounds on log covering numbers.

Sourav Chatterjee (2014)
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Covering number sketch: Flows and leaks

A flow is determined by its leaks. Let µ1 ≤ V .

6

3 2

1 2 2 0

1
2

1
3
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Covering number sketch: Flows and leaks

A flow is determined by its leaks. Let µ1 ≤ V .

1

0 0

1
6 2 2 0

1
2

1
3
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Random construction

Given a flow µ, define a random flow F by its leaks:

`(F ) =


Vei with probability

`i(µ)

V

0 with probability 1− 1
V

∑
i

`i(µ).

Take convex combination of m random flows:

µm =
1
m

(F1 + · · ·+ Fm)
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Recursion

Since the node flows are negatively correlated, can show

Var(µm
v ) ≤

∑
u∈Subtree(v)

Var(`mu )

E‖µm − µ‖2 =
∑

i

E(µm
i − µi)

2 =
∑

i

Var(µm
i )

≤
∑

i

diVar(`mi )

≤ h
∑

i

Var(`mi )

≤ V 2h
m
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Covering number

Random construction thus gives a V 2h/m covering. By simple
combinatorics,

log N(ε,FV ) ≤ V 2h
ε2

(
1 + log

(
1 +

n ε2

V 2h

))

“Maurey’s argument” (van der Vaart and Wellner, 1996)
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Intuition for the gap

General minimax lower bound for isotonic regression:

inf
µ̃

sup
µ:µ1≤V

E‖µ̃− µ‖2 ≥ C min

{
σ2,V 2,

(
σ2V

n

)2/3}

• When V is small, LSE not
minimax—trivial estimator
µ̂ = 0 achieves lower
bound

• In “narrow” tree regime
α ≈ 1/3, some of the root
flows will be small

• A lasso-style estimator to
zero entire paths?

· · ·

· · ·

...
...

...

· · ·

· · ·
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II: Summary

• Flows: Tree structured generalization of isotonic regression

• Surprise: LSE is not minimax rate optimal

• Shape constraints in graph/network settings largely unexplored

S. Chatterjee and JL, “Denoising flows on trees,” IEEE
Trans. Info. Theory, 2018
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III: Prediction rule reshaping

• Imposing shape constraints on “black box” prediction rules

• Reshaping random forests

Matt Bonakdarpour Rina Foygel Barber
UChicago/Yale UChicago

Related work: Chernozhukov et al., 2010, González et al., 2015, Gupta et al., 2016, You et al., 2017, Amos et al., 2017 49 / 58



Motivation

• Shape constraints are natural in applications

I House price assumed to be decreasing function of crime rate
(all other predictors held constant)

• Not easily incorporated into popular machine algorithms

• We study different approaches to reshaping prediction rules
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Prediction rule reshaping

Suppose that f̂ : Rd −→ R is a prediction rule estimated from data
(e.g., regression or classification)

Let S be a class of functions that satisfy a set of shape contraints.
For example

∂f
∂xj
≥ 0 (monotonic), j ∈ R↑

∂2f
∂x2

j
≤ 0 (concave), j ∈ R∩

Reshaping is the infinite dimensional optimization

min
f∈S
‖f − f̂‖
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A finite optimization problem

Let S = (Sv )v∈R be candidate shape constraints, R ⊂ [d ]

Let Dn = {x1, . . . , xn} be set of test points

For v ∈ R, define the n × n prediction matrix F̂ v =
[
F̂ v

i ′,i

]
F̂ v

i ′,i = f̂ (xi,1, xi,2, . . . , xi,v−1, xi ′,v , xi,v+1, . . . , xi,d )

F̂ v
i (·) ≡ f̂ (xi,1, xi,2, . . . , xi,v−1, · , xi,v+1, . . . , xi,d ).

where xi ′,v ranges over all n values of v -th predictor.
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A finite optimization problem

Reshaped predictions f̌S obtained by projecting matrix of predicted
values onto shape constraints:

F̌S = arg min
F=(F v )v∈R

∑
v∈R
‖F v − F̂ v‖2F

such that F v
i ∈ Sv , for each v ∈ R

diag(F v ) = diag(F w ), for all v ,w ∈ R

Reshaped predictions:
f̌S = diag(F̌ v

S )
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Intersecting isotonic regressions

• Suppose constraints are monotonicity contraints

• Reshaping leads to “intersecting isotonic regressions” due to
consistency constraints diag(F v ) = diag(F w )

• A generalization of PAVA solves this efficiently
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Reshaping random forests

1 Grow the tree in the usual way
2 Reshape the leaf values to enforce monotonicity

55 / 58



Illustration

x3

x2 x1

x1 `3

≤
1 >

1

r1 x2

r2 r3

≤
3 >

3

≤
1 >

1

`1 `2

≤
2 >

2

x2 ≤ 1

x2 > 1

x1 ≤ 2 x1 > 2

`1 `2

`3

x2 ≤ 3

x2 > 3

x1 ≤ 1 x1 > 1

r1
r2

r3
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Illustration
x3

x2 x1

x1 `3

≤
1 >

1

r1 x2

r2 r3

≤
3 >

3

≤
1 >

1

`1 `2

≤
2 >

2

x2 ≤ 1

x2 > 1

x1 ≤ 2 x1 > 2

`1 `2

`3

x2 ≤ 3

x2 > 3

x1 ≤ 1 x1 > 1

r1
r2

r3

Exact estimator, 6 constraints:

µ`2 ≤ µr2 , µ`1 ≤ µr1 , µ`1 ≤ µr2 , µ`3 ≤ µr1 , µ`3 ≤ µr2 , µ`3 ≤ µr3
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Illustration
x3

x2 x1

x1 `3

≤
1 >

1

r1 x2

r2 r3

≤
3 >

3

≤
1 >

1

`1 `2

≤
2 >

2

x2 ≤ 1

x2 > 1

x1 ≤ 2 x1 > 2

`1 `2

`3

x2 ≤ 3

x2 > 3

x1 ≤ 1 x1 > 1

r1
r2

r3

Over-constrained estimator, all 9 pairwise constraints

µ`1 ≤ µr1 , µ`1 ≤ µr2 , µ`1 ≤ µr3 , . . .
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Reference

“Prediction rule reshaping,” Matt Bonakdarpour, Sabyasachi
Chatterjee, Rina Foygel Barber, and JL, arXiv:1805.06439

(to be presented at ICML this summer)
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Summary

Interplay between global and local structure:

• Stochastic convex optimization

• Signal denoising on trees

• Reshaping prediction rules

Merci beaucoup d’avoir m’écouté!
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