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What is machine learning?

Algorithms/systems for learning to “do stuff"

... with data/observations of some sort.

- R. E. Schapire
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What is machine learning?

@ “Do stuff™:

estimate demographics

predict weather/stock price/credit default
recognize spoken words/printed characters
classify email (spam/no-spam)

diagnose disease ...

v

vV vyVvYy

@ “Data/observations”:
» census samples
» weather records
» images, text files
» medical records ...
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Machine Learning Taxonomy

Supervized vs. Unsupervized learning
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Machine Learning Taxonomy

Supervized vs. Unsupervized learning

Classification algorithms for supervized learning:

@ Parametric classifier (linear, support vector machines, neural
networks, etc.)

@ Nonparametric (K-nearest neighbours, etc.)

@ Bayesian VS frequentist approaches
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Machine Learning Taxonomy

Supervized vs. Unsupervized learning

Classification algorithms for supervized learning:

@ Parametric classifier (linear, support vector machines, neural
networks, etc.)

@ Nonparametric (K-nearest neighbours, etc.)

@ Bayesian VS frequentist approaches

Reinforcement learning: learning by trial and error
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This Talk: Stochastic Bandits

@ Introduction to (stochastic) bandits, Optimism in Face of
Uncertainty (OFU)
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This Talk: Stochastic Bandits

@ Introduction to (stochastic) bandits, Optimism in Face of
Uncertainty (OFU)

@ Posterior (Thompson) Sampling: Bayesian equivalent++

@ BESA (Best Empirical Subsampled Arm): K-NN equivalent
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This Talk: Stochastic Bandits

@ Introduction to (stochastic) bandits, Optimism in Face of
Uncertainty (OFU)

@ Posterior (Thompson) Sampling: Bayesian equivalent++
@ BESA (Best Empirical Subsampled Arm): K-NN equivalent

@ Restricted optimism
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This Talk: Stochastic Bandits

Introduction to (stochastic) bandits, Optimism in Face of
Uncertainty (OFU)

Posterior (Thompson) Sampling: Bayesian equivalent++

@ BESA (Best Empirical Subsampled Arm): K-NN equivalent

Restricted optimism

A little bit intuition on what works

No deep math (in the talk)
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Part |: Stochastic bandits

1 2 3 - N

N “arms” or actions
(ads to show, transmission frequencies, trades, ...)

each arm ¢ is an unknown probability distribution ;
with mean [{;
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Stochastic bandits

Time 1

3 - N
ﬁ 1] kil

£ $ A Play arm, collect “reward
Ry ~ 65 (ad clicks, data rate, profit, ...)

S. Mannor (Technion)

[m]

Misspecified and Complex Bandits Problems

=)



Stochastic bandits

1 2

Ry ~ 04
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Stochastic bandits
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Time 3

1 2

| N N ]
"tsn\
R3 ~ 6y
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Stochastic bandits

Time 4

2 3

-
'\$A\
Ry ~ 04
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Stochastic bandits

Time {

Repeat ...
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Performance Metrics

Total (expected) reward at time T:
E[Ry + R+ --+ R7]

Regret:
Tpmax —E[Ry + R + - + R7]
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Performance Metrics

Total (expected) reward at time T:
]E[R1 +R2+"'+HT]
Regret:
Tpmax —E[Ry + R + - + R7]
Probability of identifying the best arm

P (MAT = Mmax)

Risk aversion: (Mean — Variance) of reward
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Applications/motivation

@ Clinical trials (original motivation)
@ Internet Advertising

@ Comment Scoring

@ Cognitive Radio

@ Dynamic Pricing

@ Sequential Investment

@ Noisy Function Optimization

@ Adaptive Routing/Congestion Control
@ Job Scheduling

@ Bidding in auctions

@ Crowdsourcing

@ Learning in games
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Some aspects

@ Distributions of arms a priori unknown (perhaps only form)

@ Explore or Exploit?
@ Greed is bad!

» “Play the arm with best average reward so far"
» 2-armed Bernoulli bandit: Bernoulli(0.4), Bernoulli(0.2)

Time 1: Play arm 1, get reward 0
Time 2: Play arm 2, get reward 1
Time 3, 4, 5 ?: Always play arm 2

(Happens with probability of 12%.)
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Some aspects

@ Distributions of arms a priori unknown (perhaps only form)

@ Explore or Exploit?
@ Greed is bad!

» “Play the arm with best average reward so far"
» 2-armed Bernoulli bandit: Bernoulli(0.4), Bernoulli(0.2)

Time 1: Play arm 1, get reward 0
Time 2: Play arm 2, get reward 1
Time 3, 4, 5 ?: Always play arm 2

(Happens with probability of 12%.)
@ Gives EJregret] > cT
@ Can we guarantee sub-linear regret?
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Some history

@ Regret minimization

Originally [Robbins '52]

Gittins index [Gittins-Jones "79]

Asymptotically optimal allocation rules [Lai and Robbins ’85]
epsilon-greedy [Sutton-Barto '98]

Boltzmann Exploration/SoftMax algorithm [....]

vV vy vy VY VY

@ Best Arm identification
Median Elimination [Even-darEtAl'02+MTsitsiklis04’]

LUCB [KalyanakrishnanEtAl'12]
Refinements [KarninEtAl'13]

vV vyVvVYyy
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Some history

@ Regret minimization

Originally [Robbins '52]

Gittins index [Gittins-Jones "79]

» Asymptotically optimal allocation rules [Lai and Robbins ’85]
» epsilon-greedy [Sutton-Barto '98]

Boltzmann Exploration/SoftMax algorithm [....]

v

v

v

>

@ Best Arm identification

Median Elimination [Even-darEtAl'02+MTsitsiklis04’]
LUCB [KalyanakrishnanEtAl'12]

Refinements [KarninEtAl'13]

vV vyVvVYyy

@ Upper and lower bounds are known and match
@ So what is left to do?
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Optimism in face of uncertainty: UCB

« Upper Confidence Bound algorithm [AuerEtAI'02]
+ ldea 1: Consider variance of estimates!

Toss a coin (of unknown bias) k times
and get Heads 75% of the time.
Typical range of the true bias?

— G L\ with high
0 (\/f—) probability

,_/ . e
0.75
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UCB: the policy

Idea 2: Be optimistic under uncertainty!

1 2 3 - N

Play arm A 2logt
maximizing L T
2
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UCB: Performance

[AuerEtAI'02] After t plays, UCB gets expected reward

: 0 Nlogt
ﬂmax -
A
L ) | J
Y Y
Best possible Regret
expected reward oft)

Per-round regret vanishes
as t becomes large

‘I\
Regret(t) U‘I \
f - \ U

Learning!

s

o0 o0, 1009

t
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Part Il: Thompson Sampling

@ Prehistoric algorithm (1933’)
@ Pretend to be Bayesian
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Part Il: Thompson Sampling

@ Prehistoric algorithm (1933’)
@ Pretend to be Bayesian

Setting:
@ Stochastic N-armed bandit problem
@ Objective is to minimize regret/find best arm
@ Idea: Use “fake” priors
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The algorithm

“Prior” distribution
for Arm 1’s mean

“Prior” distribution
for Arm 2's mean
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The algorithm

Random

samples

“Prior” distribution
for Arm 1’s mean

“Prior” distribution
for Arm 2's mean
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The algorithm
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The algorithm

Update to “Posterior”,
Bayes’ Rule
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The algorithm

Random

samples
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The algorithm
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The algorithm

Update to “Posterior”,
Bayes’ Rule
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The algorithm

@ Very simple

@ Was a heuristic with excellent performance in practice for +80
years
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The algorithm

@ Very simple

@ Was a heuristic with excellent performance in practice for +80
years

@ Was shown to be regret-optimal (Bernoulli bandits)!
[Agrawal-Goyal11], [Kaufmann-Munos12]

@ Natural extension, excellent performance for linear bandits with
Gaussian priors [Agrawal-Goyal13]
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More Generally: Complex Bandits

1 2 3

Xg ~ 0y

e o @

. . - -
Complex Actions
Al \
,‘3‘ Ry = f(X; Ay)
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Example: Makespan

A load balancing problem
@ 2 machines
@ A; = partition of jobs to machines
@ Each job has a duration
@ Cost per machine is the total duration
@ Cost (observed) is the maximal cost of the machines.

@ Number of actions is 2". With kK machines: k.
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Example: Ranking

aq as a3 an
:] | . ' ' ' H
X; ~ 6y Xo ~ 0 X3 ~ 03 Xn ~0n

® O ® O
All permutations of {1,2,...,N}

At\l

{'Qﬂ —R; = #Inversions(X,A,)
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How to use Thompson Sampling?

Imagine fictitious’ prior distribution over all parameters @
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How to use Thompson Sampling?

Sample a set of parameters
p=(p, pia,

s H N) ~  Prior
S. Mannor (Technion)
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How to use Thompson Sampling?

Assume [ is true, play BestAction( /1)
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How to use Thompson Sampling?

)

Ply] — PlulY]

Get reward Y, Update prior to posterior (Bayes’ Theorem)
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How to use Thompson Sampling?

Key issues:
@ Easy optimization problem given “true” parameters.
@ Information structure allows to update “prior”.

S. Mannor (Technion) Misspecified and Complex Bandits Problems May 31° 2018 35/63



How to use Thompson Sampling?

Key issues:
@ Easy optimization problem given “true” parameters.
@ Information structure allows to update “prior”.

@ We use the word prior meaning “fake" prior as no Bayesian model
is assumed.

@ Unleash the power of sequential Monte-Carlo method (particle
filters, MCMC and others).
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What can be proved?

General Bound [GopalanMMansour14]: Under any “reasonable” prior,
finite actions,

Regret(T) = O(Clog T)
with probability at least 1 — §.

The constant C is the information complexity:
@ Can be much better than number of actions
@ Complex bandit structure
@ Can be interpreted as an LP
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Numerics: Partition Jobs for Scheduling

Cumulative Regret for Makespan — Scheduling 10 jobs on 2 machines.
300

~ Thompson Sampling|

Cumulative Regret

0 200 400 600 800 1000
Time
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Play subset; see max

—
3]

Cumulative regret for MAX

x10° N = 100 arms, M = Subset size = 3.

~# Thom |:I)son Sampii ng I I
ucB

—_
@ o

[=)]

UCB still exploring
(linear region)!
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Numerics: Play Subsets. See average

(100 items, choose 50 items)

x 10°

[=2]

>~ o

100 o 107
. (3{1 T actions!

+ TS with Gaussian
prior/posterior runs in
minutes

Cumulative Regret
I'\IJ w

=y
T

OQ
no

4_ 6 8 10
Time x10°
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Why does Thompson Sampling work?
@ Sampling the prior serves as a regularizer/perturber
@ Information is processed “optimally"

@ Priors must have “grain of truth"—true parameter have enough
probability

@ No need for an exact updating algorithm
@ Thompson Sampling is not optimistic

@ A principled approach for exploration-exploitation
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Back to bandits

Part Ill: Best Empirical Subsampled Arm (BESA)
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How to sample if you must?

Suppose | observe rewards from two arms:
@ Am1:10100101001010101001(9"1"and 11 "0")
@ Aim2: 00 1

@ Is it fair to compare the empirical average of the following arms?
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How to sample if you must?

Suppose | observe rewards from two arms:
@ Arm1:10100101001010101001(9"1"and 11 "0")

@ Aim2: 00 1
@ Is it fair to compare the empirical average of the following arms?

@ NO! the arms haven'’t gotten the same number of opportunities to
show their abilities.
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How to sample if you must?

Suppose | observe rewards from two arms:
@ Arm1:10100101001010101001(9"1"and 11 "0")

@ Arm2: 001

@ Is it fair to compare the empirical average of the following arms?
@ NO! the arms haven'’t gotten the same number of opportunities to
show their abilities.

@ Solution: sample three rewards from the first arm; then compare
them to the second arm rewards.
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Subsampling for two arms

Best empirical arm is not a good idea. (Expected regret is linear.)

Let T;(n) is the number of times arm i sampled until n
x1 and xo are empirical means.

Case of two arms.
Repeat:
@ If arms were sampled same number of times — pick arm with
higher empirical reward.
©Q If arms were sampled a different number of times (wlog
T1(n) > T(n)):
@ Sample T»(n) points from history of Arm 1. s; := average of

subsampled data
@ Return arm with higher empirical reward (X2 > s1: Arm 2, xo < 81:

Arm 1)
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BESA competition

winner
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BESA competition

Competition(iy, . . ., im)

Q If m=1return j

@ winner; = Competition(iy, . .., i\ m/2))-
© winner, = Competition(ijm/zj+1, - - - »im)-
©Q Return Compare(winnery, winner,).
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BESA competition

Competition(iy, . . ., im)

Q If m=1return j

@ winner; = Competition(iy, . .., i\ m/2))-
© winner, = Competition(ijm/zj+1, - - - »im)-
©Q Return Compare(winnery, winner,).

BESA(1,2,...,K)
(it,...,Ix) = random permutation of {1,2,..., K}
Return Competition(iy, . . ., ix)
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Experimental setting

In each on of the scenarios:
e T =20,000

@ 50,000 independent experiments

@ All the rewards were drawn in advance, thus all the algorithms
observe the same rewards if they pull the same arms.
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Bernoulli(0.81) Vs. Bernoulli(0.8)
|| emsa | kuce | kuces | TS |

Regret a26 52.3 a7 461
Beat BESA = 25.6% 36.9% 35.2%
Run Time a.6x 2.8x 3.5X X
L) ) e Thomgeson
- ™ - / .
. § . .
£ .l ] £ .l 18 ‘i £ 1 18 ‘I & g;.lu L8 ‘i
2
o <& = = = 9ac
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Bernoulli(0.1, 3{0.05}, 3{0.02}, 3{0.01})
|| BESA | KLUCB | KLUGB:+ | TS | Others"

Regret 78.4 121.2 72.8 83.4 100-400
Beat BESA - 1.6% 35.4% 3.1%

Run Time 13.9% 2.8x 3.1x X

m 1 w m

el 50 i a6

- - e =

Elﬂl 100 10 1

L] - L L]

L] L] L L]

. . " .

*Others: UCB, MOSS, UCB-Tuned, DMED, CP-UCB, and UCB-V
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All Half But one 0.51

|| emA | KLU | KLuUCB

Regret

156.7 170.8 165.3 165.1
Beat BESA - 41.4% 41.6% 40.8%
Run Time 19.6X 2.8X 3X X
s s e e
] | | ™
En- e ™ 1
. - / ) B
® ® ® "
[m] = = =
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BESA for non-Bernoulli arms

BESA does not assume that the arms are Bernoulli.

BESA is not optimal for all possible configurations of arms
Example:

@ Arm 1: uniform in [0, 1]; Arm 2: uniform in [0.2, 0.4]

@ If the first pull of the first arm gave a reward in [0, 0.2), the
algorithm will pull the second arm forever.
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BESA for non-Bernoulli arms

BESA does not assume that the arms are Bernoulli.

BESA is not optimal for all possible configurations of arms
Example:
@ Arm 1: uniform in [0, 1]; Arm 2: uniform in [0.2, 0.4]

@ If the first pull of the first arm gave a reward in [0, 0.2), the
algorithm will pull the second arm forever.

A small modification: Sample each arm M times (M is small).

BESA rocks the non-Bernoulli/misspecified case
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Exp(3), Exp(3), Exp(3), Exp(3), Exp(1)

|| BESA | BESA10 | KLUCB-exp | UCB-Tuned | BEAL0 | Others* |

Regret 53.3 314 (i 97.6 306.5 60-110,120+
Beat BESA - 40.6% 5.7% 4.3%
Beat BESA 10 59.4% - 1.4% 0.9%
Run Time 6X 7.1X 2.8X X
" wé : :E
*Qthers: UCB, MOSS, KL-UCB, and UCB-V =
[m] = = =
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{Poisson(} + £)}ic12. .6

|| BESA | BESA 10| KLUCB-poisson | kl-UCB | BEA 10

Regret 19.4 16.7 25.1 150.6 144.6
Beat BESA - 39.9% 4.1% 0.7%
Beat BESA 10 59.5% - 2% 0.2%
Run Time 3.5X 3.5X 1.2X X
= - — =
¥ p : .
i : |
* w1 e i ‘s W L 3 H s X e i85 H ] [} x 15
o 5 =
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Contextual badnits

@ Karms

@ Context x exogenous (can assume in R for the sake of
discussion).

@ Given context x, arm i has a reward distributed with param 6;(x)
@ Need to select best arm for each context
@ History is now triplets of (x;, aj, r;)

S. Mannor (Technion) Misspecified and Complex Bandits Problems May 315 2018 53/63



Contextual badnits

@ K arms

@ Context x exogenous (can assume in R for the sake of
discussion).

@ Given context x, arm i has a reward distributed with param 6;(x)
@ Need to select best arm for each context
@ History is now triplets of (x;, a;, r;)

@ Probably the most important/practical problem in bandits

@ Not a whole many algorithms out there: most rely on linearity,
partitioning the space + continuity (or Thompson Sampling)
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Contextual BESA

Two arms (a, b)

Define a weight function w(x, x’) that is 1 for x = x’ and decreasing if
|Ix — x’|| grows.

For a vector Y of context, reward pairs (Y; = (x;, r;)). Define:

wa(x, Y) = >4 w(x, Context(Y;))Reward(Y;)
o S°7, w(x, Context(Y;))

We also have a function Rad(t) that is the radius of relevance. We will
subsample according:

S(Y,x,t) ={Y; € Y :d(context(Y;),x) < Rad(t)}
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Contextual BESA (two arms)

Time t, context is x;.
Q@ S7=9( YﬁN[(a),x,, t)
Q sP=g( Y1b:N,(b)7Xf’ t)
© EffSize = min{|S?|,|S?|}
© /2 = random Effsize indexes from [1 : |S9|]
@ /P = random Effsize indexes from [1 : |S?|]
Q fira = wa(x, S%(I7))
@ ity = wa(x, S(IP))
© Choose maximizer arg max i .
(breaking ties for action with smaller relevant history)
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Some comments on Contextual BESA

@ More than two arms are handled with Competition(. . .)

@ The algorithm degenerates to BESA for the case of a single
context collecting all arms and rewards

@ Algorithm requires remembering all values of contexts and
rewards per arm

@ Context can be anything (as long as a metric d is defined).
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Experiments with Contextual BESA

@ d(x,z) = |x — z|, w(x,z) = e 9%, Rad(t) = 1.

| Problem | Optimal Reward | BESA Reward | Regret |

Left

187,500

187,383

117

Right

137,500

137,267

233

S. Mannor (Technion)
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Experiments with Contextual BESA

: : : : . : : ; ;
01 02 03 o0& 05 06 07 o8 09

@ d(x,z)=|x —z|, w(x,2) = e79%3) wy(x, z) = e~ 100d(x.2)

Paramters | Optimal Reward | BESA Reward | Regret |
w(x,z), Rad(t) = 1 227,270 197,197 | 30,072
wa(x, y), Rad(t) = 1 227,270 219,377 7,893

wo(x, y), Rad(t) = 0.025 227,270 226,220 1,050
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Why does BESA work?

@ Subsampling works
@ A principled approach for exploration-exploitation

@ All arms are sampled many times: subsampling does not hurt.
Some arms sampled a few times: BESA encourages exploration

@ Contextual case: weighing serves as regularization (same as k in
k-nearest neighbours).
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Conclusion (BESA)

BESA is highly competitive to well known algorithms, based on the
empirical results.

@ Simple
@ Flexibile: no need to know the model
o Efficient

@ BESA theoretical expected regret: O(log(n)) for standard bandits
(proof uses Thompson Sampling techniques)

Unknown complexity for contextual case

Tuning may not be easy for contextual problems
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Part IV: Restricted Optimism

OFU makes sesne
@ But when overdone, can lead to significantly inferior performance
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Part IV: Restricted Optimism

OFU makes sesne
@ But when overdone, can lead to significantly inferior performance

Posterior sampling is great: can sample complex models
@ Hard to find and tune prior to get good performance
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Part IV: Restricted Optimism

OFU makes sesne

@ But when overdone, can lead to significantly inferior performance

Posterior sampling is great: can sample complex models
@ Hard to find and tune prior to get good performance

Our idea: Use posterior sampling as the algorithmic engine
@ Use number of samples to control for optimism
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Part IV: Restricted Optimism

Pseudo-algorithm (M, K parameters).
Repeat
@ Use posterior sampling like in Thompson sampling
@ Sample K models from prior
@ Pick M-th “most optimistic” model
@ Play arm under the assumption this model is true.
@ Update prior-posterior
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Part IV: Restricted Optimism

Pseudo-algorithm (M, K parameters).
Repeat
@ Use posterior sampling like in Thompson sampling
Sample K models from prior
Pick M-th “most optimistic” model
Play arm under the assumption this model is true.
Update prior-posterior

If K =M = 1 we obtain standard Thompson sampling.
Normally K is not small and M is smallish

M is easier to tune than the prior

Need to find the Mth optimistic prior
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Part IV: Restricted Optimism

Pseudo-algorithm (M, K parameters).
Repeat
@ Use posterior sampling like in Thompson sampling
Sample K models from prior
Pick M-th “most optimistic” model
Play arm under the assumption this model is true.
Update prior-posterior

@ If K = M =1 we obtain standard Thompson sampling.
@ Normally K is not small and M is smallish

@ M is easier to tune than the prior

@ Need to find the Mth optimistic prior

@ Can also sample from the M best models
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Conclusion
New algorithms beyond OFU and variants

@ Thompson Sampling can handle complex observations and
actions

@ BESA works well with mis-specified models
@ Restricted optimism a general principle
@ Much to do on the theory side

@ What are the underlying concepts behind the two approaches?

@ Extensions to Markov models

We are hiring (postdocs and PhD students): email me
(shie@ee.technion.ac.il) for details!
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