
Misspecified and Complex Bandits Problems

Shie Mannor

Department of Electrical Engineering
Technion

Joint work with: Akram Baransi (Technion), Aditya Gopalan (IISc), Snir Cohen (Jether
Energy), Odalric Maillard (Saclay) and Yishay Mansour (TAU/Google)

Supported by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement

306638 (SUPREL).

May 31st 2018

S. Mannor (Technion) Misspecified and Complex Bandits Problems May 31st 2018 1 / 63



What is machine learning?

Algorithms/systems for learning to “do stuff"

... with data/observations of some sort.

- R. E. Schapire
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What is machine learning?

“Do stuff”:
I estimate demographics
I predict weather/stock price/credit default
I recognize spoken words/printed characters
I classify email (spam/no-spam)
I diagnose disease ...

“Data/observations”:
I census samples
I weather records
I images, text files
I medical records ...

S. Mannor (Technion) Misspecified and Complex Bandits Problems May 31st 2018 3 / 63



Machine Learning Taxonomy
Supervized vs. Unsupervized learning

Classification algorithms for supervized learning:
Parametric classifier (linear, support vector machines, neural
networks, etc.)
Nonparametric (K-nearest neighbours, etc.)

Bayesian VS frequentist approaches

Reinforcement learning: learning by trial and error

S. Mannor (Technion) Misspecified and Complex Bandits Problems May 31st 2018 4 / 63



Machine Learning Taxonomy
Supervized vs. Unsupervized learning

Classification algorithms for supervized learning:
Parametric classifier (linear, support vector machines, neural
networks, etc.)
Nonparametric (K-nearest neighbours, etc.)

Bayesian VS frequentist approaches

Reinforcement learning: learning by trial and error

S. Mannor (Technion) Misspecified and Complex Bandits Problems May 31st 2018 4 / 63



Machine Learning Taxonomy
Supervized vs. Unsupervized learning

Classification algorithms for supervized learning:
Parametric classifier (linear, support vector machines, neural
networks, etc.)
Nonparametric (K-nearest neighbours, etc.)

Bayesian VS frequentist approaches

Reinforcement learning: learning by trial and error

S. Mannor (Technion) Misspecified and Complex Bandits Problems May 31st 2018 4 / 63



This Talk: Stochastic Bandits

Introduction to (stochastic) bandits, Optimism in Face of
Uncertainty (OFU)

Posterior (Thompson) Sampling: Bayesian equivalent++

BESA (Best Empirical Subsampled Arm): K-NN equivalent

Restricted optimism

A little bit intuition on what works

No deep math (in the talk)
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Part I: Stochastic bandits
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Stochastic bandits
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Stochastic bandits
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Stochastic bandits
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Stochastic bandits
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Performance Metrics

Total (expected) reward at time T :

E [R1 + R2 + · · ·+ RT ]

Regret:
Tµmax − E [R1 + R2 + · · ·+ RT ]

Probability of identifying the best arm

P
(
µAT = µmax

)
Risk aversion: (Mean – Variance) of reward

· · ·
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Applications/motivation

Clinical trials (original motivation)
Internet Advertising
Comment Scoring
Cognitive Radio
Dynamic Pricing
Sequential Investment
Noisy Function Optimization
Adaptive Routing/Congestion Control
Job Scheduling
Bidding in auctions
Crowdsourcing
Learning in games
· · ·
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Some aspects

Distributions of arms a priori unknown (perhaps only form)
Explore or Exploit?
Greed is bad!

I “Play the arm with best average reward so far"
I 2-armed Bernoulli bandit: Bernoulli(0.4), Bernoulli(0.2)

Time 1: Play arm 1, get reward 0
Time 2: Play arm 2, get reward 1
Time 3, 4, 5 ?: Always play arm 2

(Happens with probability of 12%.)

Gives E[regret] > cT

Can we guarantee sub-linear regret?
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Some history

Regret minimization
I Originally [Robbins ’52]
I Gittins index [Gittins-Jones ’79]
I Asymptotically optimal allocation rules [Lai and Robbins ’85]
I epsilon-greedy [Sutton-Barto ’98]
I Boltzmann Exploration/SoftMax algorithm [....]
I ...

Best Arm identification
I Median Elimination [Even-darEtAl’02+MTsitsiklis04’]
I LUCB [KalyanakrishnanEtAl’12]
I Refinements [KarninEtAl’13]
I ....

Upper and lower bounds are known and match
So what is left to do?
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Optimism in face of uncertainty: UCB
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UCB: the policy
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UCB: Performance
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Part II: Thompson Sampling

Prehistoric algorithm (1933’)
Pretend to be Bayesian

Setting:
Stochastic N-armed bandit problem
Objective is to minimize regret/find best arm
Idea: Use “fake” priors
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The algorithm
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The algorithm

Very simple

Was a heuristic with excellent performance in practice for ±80
years

Was shown to be regret-optimal (Bernoulli bandits)!
[Agrawal-Goyal11], [Kaufmann-Munos12]
Natural extension, excellent performance for linear bandits with
Gaussian priors [Agrawal-Goyal13]
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More Generally: Complex Bandits
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Example: Makespan

A load balancing problem

2 machines
At = partition of jobs to machines
Each job has a duration
Cost per machine is the total duration
Cost (observed) is the maximal cost of the machines.

Number of actions is 2n. With k machines: kn.
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Example: Ranking
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How to use Thompson Sampling?
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How to use Thompson Sampling?

Key issues:
Easy optimization problem given “true” parameters.
Information structure allows to update “prior”.

We use the word prior meaning “fake" prior as no Bayesian model
is assumed.

Unleash the power of sequential Monte-Carlo method (particle
filters, MCMC and others).

S. Mannor (Technion) Misspecified and Complex Bandits Problems May 31st 2018 35 / 63



How to use Thompson Sampling?

Key issues:
Easy optimization problem given “true” parameters.
Information structure allows to update “prior”.

We use the word prior meaning “fake" prior as no Bayesian model
is assumed.

Unleash the power of sequential Monte-Carlo method (particle
filters, MCMC and others).

S. Mannor (Technion) Misspecified and Complex Bandits Problems May 31st 2018 35 / 63



What can be proved?

General Bound [GopalanMMansour14]: Under any “reasonable" prior,
finite actions,

Regret(T ) = O(C log T )

with probability at least 1− δ.

The constant C is the information complexity:
Can be much better than number of actions
Complex bandit structure
Can be interpreted as an LP
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Numerics: Partition Jobs for Scheduling
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Play subset; see max
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Numerics: Play Subsets. See average
(100 items, choose 50 items)
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Why does Thompson Sampling work?

Sampling the prior serves as a regularizer/perturber

Information is processed “optimally"

Priors must have “grain of truth"—true parameter have enough
probability

No need for an exact updating algorithm

Thompson Sampling is not optimistic

A principled approach for exploration-exploitation
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Back to bandits

Part III: Best Empirical Subsampled Arm (BESA)
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How to sample if you must?

Suppose I observe rewards from two arms:
Arm 1: 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 (9 "1" and 11 "0")
Arm 2: 0 0 1

Is it fair to compare the empirical average of the following arms?
NO! the arms haven’t gotten the same number of opportunities to
show their abilities.

Solution: sample three rewards from the first arm; then compare
them to the second arm rewards.
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Subsampling for two arms

Best empirical arm is not a good idea. (Expected regret is linear.)

Let Ti(n) is the number of times arm i sampled until n
x1 and x2 are empirical means.

Case of two arms.
Repeat:

1 If arms were sampled same number of times→ pick arm with
higher empirical reward.

2 If arms were sampled a different number of times (wlog
T1(n) > T2(n)):

1 Sample T2(n) points from history of Arm 1. s1 := average of
subsampled data

2 Return arm with higher empirical reward (x2 > s1: Arm 2, x2 < s1:
Arm 1)
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BESA competition
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BESA competition

Competition(i1, . . . , im)
1 If m = 1 return i1
2 winner1 = Competition(i1, . . . , ibm/2c).
3 winner2 = Competition(ibm/2c+1, . . . , im).
4 Return Compare(winner1,winner2).

BESA(1,2, . . . ,K )

(i1, . . . , iK ) = random permutation of {1,2, . . . ,K}
Return Competition(i1, . . . , iK )
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Experimental setting

In each on of the scenarios:
T = 20,000

50,000 independent experiments

All the rewards were drawn in advance, thus all the algorithms
observe the same rewards if they pull the same arms.
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BESA for non-Bernoulli arms

BESA does not assume that the arms are Bernoulli.

BESA is not optimal for all possible configurations of arms
Example:

Arm 1: uniform in [0, 1]; Arm 2: uniform in [0.2, 0.4]
If the first pull of the first arm gave a reward in [0, 0.2), the
algorithm will pull the second arm forever.

A small modification: Sample each arm M times (M is small).

BESA rocks the non-Bernoulli/misspecified case
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Exp(1
5),Exp(1

4),Exp(1
3),Exp(1

2),Exp(1)
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{Poisson(1
2 + i

3)}i=1,2,...,6
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Contextual badnits

K arms
Context x exogenous (can assume in R for the sake of
discussion).
Given context x , arm i has a reward distributed with param θi(x)
Need to select best arm for each context
History is now triplets of (xi ,ai , ri)

Probably the most important/practical problem in bandits
Not a whole many algorithms out there: most rely on linearity,
partitioning the space + continuity (or Thompson Sampling)
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Contextual BESA

Two arms (a,b)
Define a weight function w(x , x ′) that is 1 for x = x ′ and decreasing if
‖x − x ′‖ grows.
For a vector Y of context, reward pairs (Yi = (xi , ri)). Define:

wa(x ,Y ) =

∑n
i=1 w(x ,Context(Yi))Reward(Yi)∑n

i=1 w(x ,Context(Yi))

We also have a function Rad(t) that is the radius of relevance. We will
subsample according:

S(Y , x , t) = {Yi ∈ Y : d(context(Yi), x) ≤ Rad(t)}
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Contextual BESA (two arms)

Time t, context is xt .
1 Sa = S(Y a

1:Nt (a)
, xt , t)

2 Sb = S(Y b
1:Nt (b)

, xt , t)

3 EffSize = min{|Sa|, |Sb|}
4 Ia

t = random Effsize indexes from [1 : |Sa|]
5 Ib

t = random Effsize indexes from [1 : |Sb|]
6 µ̂t ,a = wa(x ,Sa(Ia

t ))

7 µ̂t ,b = wa(x ,Sb(Ib
t ))

8 Choose maximizer arg max µ̂t ,∗
(breaking ties for action with smaller relevant history)
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Some comments on Contextual BESA

More than two arms are handled with Competition(. . .)

The algorithm degenerates to BESA for the case of a single
context collecting all arms and rewards

Algorithm requires remembering all values of contexts and
rewards per arm

Context can be anything (as long as a metric d is defined).
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Experiments with Contextual BESA

,

d(x , z) = |x − z|, w(x , z) = e−d(x ,z), Rad(t) = 1.

Problem Optimal Reward BESA Reward Regret
Left 187,500 187,383 117

Right 137,500 137,267 233

S. Mannor (Technion) Misspecified and Complex Bandits Problems May 31st 2018 57 / 63



Experiments with Contextual BESA

,

d(x , z) = |x − z|, w(x , z) = e−d(x ,z), w2(x , z) = e−100d(x ,z)

Paramters Optimal Reward BESA Reward Regret
w(x , z), Rad(t) = 1 227,270 197,197 30,072
w2(x , y), Rad(t) = 1 227,270 219,377 7,893

w2(x , y), Rad(t) = 0.025 227,270 226,220 1,050
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Why does BESA work?

Subsampling works

A principled approach for exploration-exploitation

All arms are sampled many times: subsampling does not hurt.
Some arms sampled a few times: BESA encourages exploration

Contextual case: weighing serves as regularization (same as k in
k -nearest neighbours).
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Conclusion (BESA)

BESA is highly competitive to well known algorithms, based on the
empirical results.

Simple
Flexibile: no need to know the model
Efficient
BESA theoretical expected regret: O(log(n)) for standard bandits
(proof uses Thompson Sampling techniques)

Unknown complexity for contextual case

Tuning may not be easy for contextual problems

S. Mannor (Technion) Misspecified and Complex Bandits Problems May 31st 2018 60 / 63



Part IV: Restricted Optimism

OFU makes sesne
But when overdone, can lead to significantly inferior performance

Posterior sampling is great: can sample complex models
Hard to find and tune prior to get good performance

Our idea: Use posterior sampling as the algorithmic engine
Use number of samples to control for optimism
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Part IV: Restricted Optimism
Pseudo-algorithm (M, K parameters).

Repeat
Use posterior sampling like in Thompson sampling
Sample K models from prior
Pick M-th “most optimistic” model
Play arm under the assumption this model is true.
Update prior-posterior

If K = M = 1 we obtain standard Thompson sampling.
Normally K is not small and M is smallish
M is easier to tune than the prior
Need to find the Mth optimistic prior
Can also sample from the M best models
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Conclusion
New algorithms beyond OFU and variants

Thompson Sampling can handle complex observations and
actions
BESA works well with mis-specified models
Restricted optimism a general principle

Much to do on the theory side

What are the underlying concepts behind the two approaches?

Extensions to Markov models

We are hiring (postdocs and PhD students): email me
(shie@ee.technion.ac.il) for details!
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