

Misspecified and Complex Bandits Problems

Shie Mannor

Department of Electrical Engineering
Technion

Joint work with: Akram Baransi (Technion), Aditya Gopalan (IISc), Snir Cohen (Jether Energy), Odalric Maillard (Saclay) and Yishay Mansour (TAU/Google)

Supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement 306638 (SUPREL).

May 31st 2018

What is machine learning?

Algorithms/systems for learning to “do stuff”

... with data/observations of some sort.

- R. E. Schapire

What is machine learning?

- “Do stuff”:
 - ▶ estimate demographics
 - ▶ predict weather/stock price/credit default
 - ▶ recognize spoken words/printed characters
 - ▶ classify email (spam/no-spam)
 - ▶ diagnose disease ...
- “Data/observations”:
 - ▶ census samples
 - ▶ weather records
 - ▶ images, text files
 - ▶ medical records ...

Machine Learning Taxonomy

Supervised vs. Unsupervised learning

Classification algorithms for supervised learning:

- Parametric classifier (linear, support vector machines, neural networks, etc.)
- Nonparametric (K-nearest neighbours, etc.)
- Bayesian VS frequentist approaches

Reinforcement learning: learning by trial and error

Machine Learning Taxonomy

Supervised vs. Unsupervised learning

Classification algorithms for supervised learning:

- Parametric classifier (linear, support vector machines, neural networks, etc.)
- Nonparametric (K-nearest neighbours, etc.)
- Bayesian VS frequentist approaches

Reinforcement learning: learning by trial and error

Machine Learning Taxonomy

Supervised vs. Unsupervised learning

Classification algorithms for supervised learning:

- Parametric classifier (linear, support vector machines, neural networks, etc.)
- Nonparametric (K-nearest neighbours, etc.)
- Bayesian VS frequentist approaches

Reinforcement learning: learning by trial and error

This Talk: Stochastic Bandits

- Introduction to (stochastic) bandits, Optimism in Face of Uncertainty (OFU)
- Posterior (Thompson) Sampling: Bayesian equivalent++
- BESA (Best Empirical Subsampled Arm): K-NN equivalent
- Restricted optimism
- A little bit intuition on what works
- No deep math (in the talk)

This Talk: Stochastic Bandits

- Introduction to (stochastic) bandits, Optimism in Face of Uncertainty (OFU)
- Posterior (Thompson) Sampling: Bayesian equivalent++
- BESA (Best Empirical Subsampled Arm): K-NN equivalent
- Restricted optimism
- A little bit intuition on what works
- No deep math (in the talk)

This Talk: Stochastic Bandits

- Introduction to (stochastic) bandits, Optimism in Face of Uncertainty (OFU)
- Posterior (Thompson) Sampling: Bayesian equivalent++
- BESA (Best Empirical Subsampled Arm): K-NN equivalent
- Restricted optimism
- A little bit intuition on what works
- No deep math (in the talk)

This Talk: Stochastic Bandits

- Introduction to (stochastic) bandits, Optimism in Face of Uncertainty (OFU)
- Posterior (Thompson) Sampling: Bayesian equivalent++
- BESA (Best Empirical Subsampled Arm): K-NN equivalent
- Restricted optimism

- A little bit intuition on what works
- No deep math (in the talk)

This Talk: Stochastic Bandits

- Introduction to (stochastic) bandits, Optimism in Face of Uncertainty (OFU)
- Posterior (Thompson) Sampling: Bayesian equivalent++
- BESA (Best Empirical Subsampled Arm): K-NN equivalent
- Restricted optimism
- A little bit intuition on what works
- No deep math (in the talk)

Part I: Stochastic bandits

1 2 3 ... N

N “arms” or actions

(ads to show, transmission frequencies, trades, ...)

each arm i is an unknown probability distribution θ_i
with mean μ_i

Stochastic bandits

Time 1

1

2

3

100

N

Play arm, collect “reward”

$$R_1 \sim \theta_2$$

(ad clicks, data rate, profit, ...)

Stochastic bandits

Time 2

$$R_2 \sim \theta_1$$

Stochastic bandits

Time 3

1

3

...

N

$$R_3 \sim \theta_2$$

Stochastic bandits

Time 4

1 2 3 ... N

$$R_4 \sim \theta_3$$

Stochastic bandits

Time t

1

2

3

...

N

Repeat ...

$$R_t \sim \theta_N$$

Performance Metrics

Total (expected) reward at time T :

$$\mathbb{E}[R_1 + R_2 + \dots + R_T]$$

Regret:

$$T\mu_{\max} - \mathbb{E}[R_1 + R_2 + \dots + R_T]$$

Probability of identifying the best arm

$$\mathbb{P}(\mu_{A_T} = \mu_{\max})$$

Risk aversion: (Mean – Variance) of reward

...

Performance Metrics

Total (expected) reward at time T :

$$\mathbb{E}[R_1 + R_2 + \dots + R_T]$$

Regret:

$$T\mu_{\max} - \mathbb{E}[R_1 + R_2 + \dots + R_T]$$

Probability of identifying the best arm

$$\mathbb{P}(\mu_{A_T} = \mu_{\max})$$

Risk aversion: (Mean – Variance) of reward

...

Applications/motivation

- Clinical trials (original motivation)
- Internet Advertising
- Comment Scoring
- Cognitive Radio
- Dynamic Pricing
- Sequential Investment
- Noisy Function Optimization
- Adaptive Routing/Congestion Control
- Job Scheduling
- Bidding in auctions
- Crowdsourcing
- Learning in games
- ...

Some aspects

- Distributions of arms a priori unknown (perhaps only form)
- **Explore or Exploit?**
- Greed is bad!
 - ▶ “Play the arm with best average reward so far”
 - ▶ 2-armed Bernoulli bandit: Bernoulli(0.4), Bernoulli(0.2)

Time 1: Play arm 1, get reward 0

Time 2: Play arm 2, get reward 1

Time 3, 4, 5 ?: Always play arm 2

(Happens with probability of 12%.)

- Gives $\mathbb{E}[\text{regret}] > cT$
- Can we guarantee sub-linear regret?

Some aspects

- Distributions of arms a priori unknown (perhaps only form)
- Explore or Exploit?
- Greed is bad!
 - ▶ “Play the arm with best average reward so far”
 - ▶ 2-armed Bernoulli bandit: Bernoulli(0.4), Bernoulli(0.2)

Time 1: Play arm 1, get reward 0

Time 2: Play arm 2, get reward 1

Time 3, 4, 5 ?: Always play arm 2

(Happens with probability of 12%.)

- Gives $\mathbb{E}[\text{regret}] > cT$
- Can we guarantee sub-linear regret?

Some history

- Regret minimization
 - ▶ Originally [Robbins '52]
 - ▶ Gittins index [Gittins-Jones '79]
 - ▶ Asymptotically optimal allocation rules [Lai and Robbins '85]
 - ▶ epsilon-greedy [Sutton-Barto '98]
 - ▶ Boltzmann Exploration/SoftMax algorithm [....]
 - ▶ ...
- Best Arm identification
 - ▶ Median Elimination [Even-darEtAl'02+MTsitsiklis04']
 - ▶ LUCB [KalyanakrishnanEtAl'12]
 - ▶ Refinements [KarninEtAl'13]
 - ▶
- Upper and lower bounds are known and match
- So what is left to do?

Some history

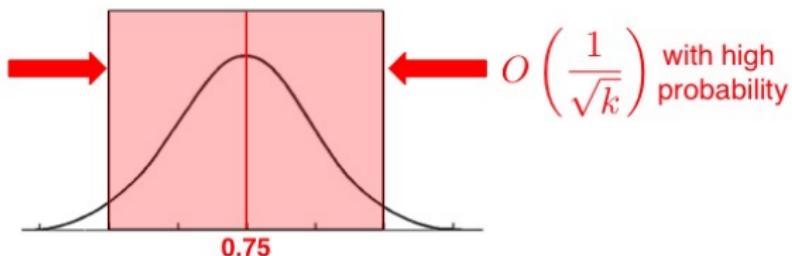
- Regret minimization
 - ▶ Originally [Robbins '52]
 - ▶ Gittins index [Gittins-Jones '79]
 - ▶ Asymptotically optimal allocation rules [Lai and Robbins '85]
 - ▶ epsilon-greedy [Sutton-Barto '98]
 - ▶ Boltzmann Exploration/SoftMax algorithm [....]
 - ▶ ...
- Best Arm identification
 - ▶ Median Elimination [Even-darEtAl'02+MTsitsiklis04']
 - ▶ LUCB [KalyanakrishnanEtAl'12]
 - ▶ Refinements [KarninEtAl'13]
 - ▶
- Upper and lower bounds are known and match
- So what is left to do?

Optimism in face of uncertainty: UCB

- Upper Confidence Bound algorithm [AuerEtAl'02]
- **Idea 1:** Consider **variance** of estimates!

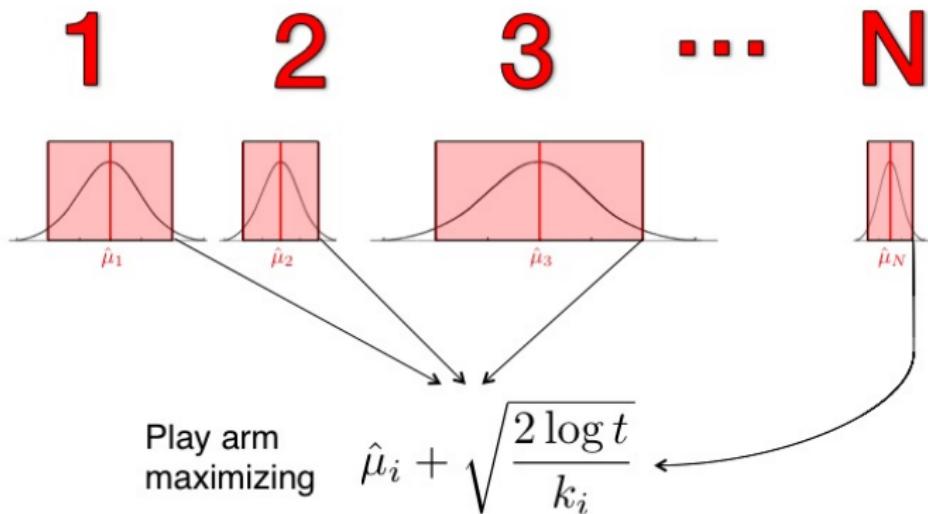
*Toss a coin (of unknown bias) k times
and get Heads 75% of the time.*

Typical range of the true bias?



UCB: the policy

Idea 2: Be optimistic under uncertainty!

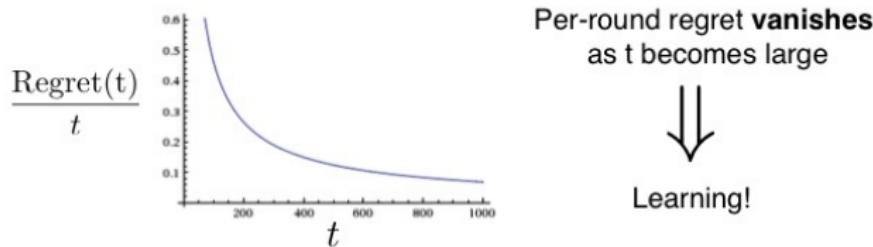


UCB: Performance

[AuerEtAl'02] After t plays, UCB gets expected reward

$$t\mu_{\max} - O\left(\frac{N \log t}{\Delta}\right)$$

Best possible expected reward Regret $o(t)$



Part II: Thompson Sampling

- Prehistoric algorithm (1933')
- Pretend to be Bayesian

Setting:

- Stochastic N -armed bandit problem
- Objective is to minimize regret/find best arm
- Idea: Use “fake” priors

Part II: Thompson Sampling

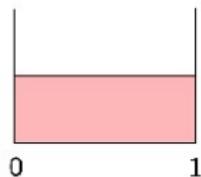
- Prehistoric algorithm (1933')
- Pretend to be Bayesian

Setting:

- Stochastic N -armed bandit problem
- Objective is to minimize regret/find best arm
- Idea: Use “fake” priors

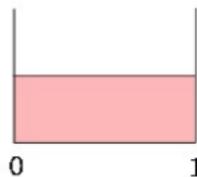
The algorithm

1



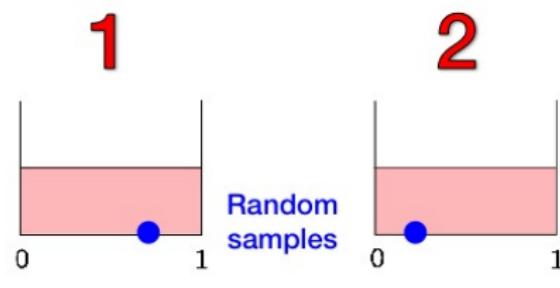
"Prior" distribution
for Arm 1's mean

2



"Prior" distribution
for Arm 2's mean

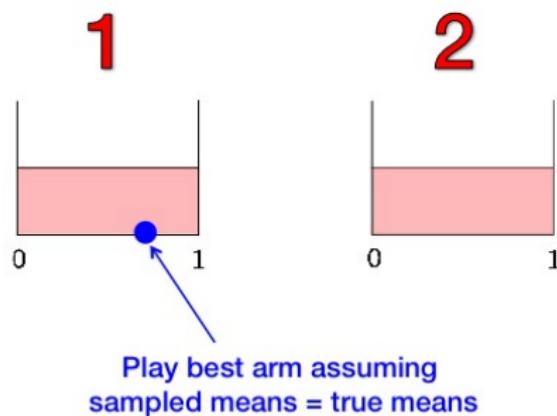
The algorithm



“Prior” distribution
for Arm 1’s mean

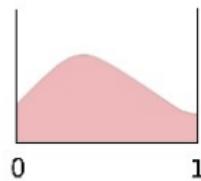
“Prior” distribution
for Arm 2’s mean

The algorithm



The algorithm

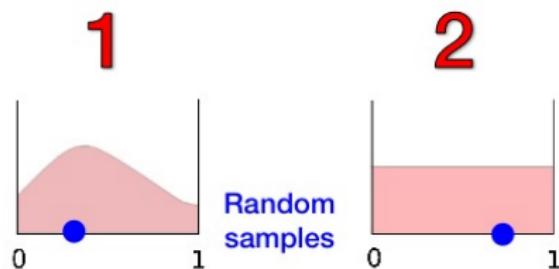
1



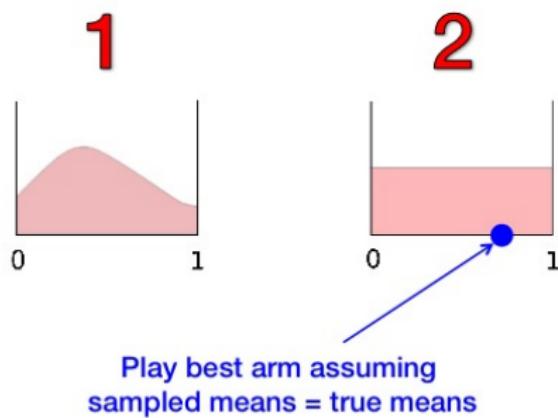
2

Update to “Posterior”,
Bayes’ Rule

The algorithm

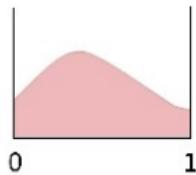


The algorithm

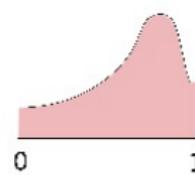


The algorithm

1



2



Update to “Posterior”,
Bayes’ Rule

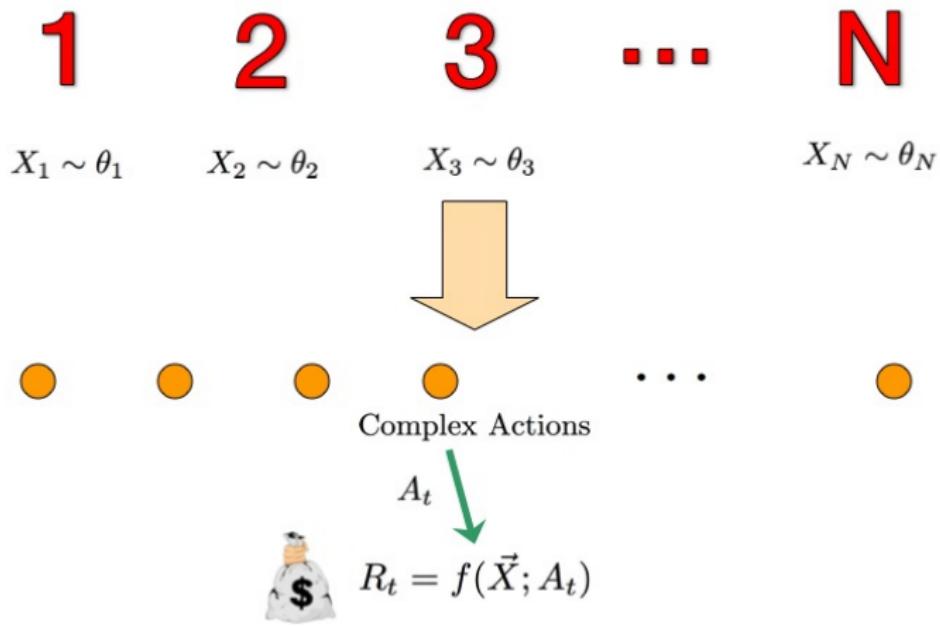
The algorithm

- Very simple
- Was a heuristic with excellent performance in practice for ± 80 years
- Was shown to be regret-optimal (Bernoulli bandits)!
[Agrawal-Goyal11], [Kaufmann-Munos12]
- Natural extension, excellent performance for linear bandits with Gaussian priors [Agrawal-Goyal13]

The algorithm

- Very simple
- Was a heuristic with excellent performance in practice for ± 80 years
- Was shown to be regret-optimal (Bernoulli bandits)!
[Agrawal-Goyal11], [Kaufmann-Munos12]
- Natural extension, excellent performance for linear bandits with Gaussian priors [Agrawal-Goyal13]

More Generally: Complex Bandits



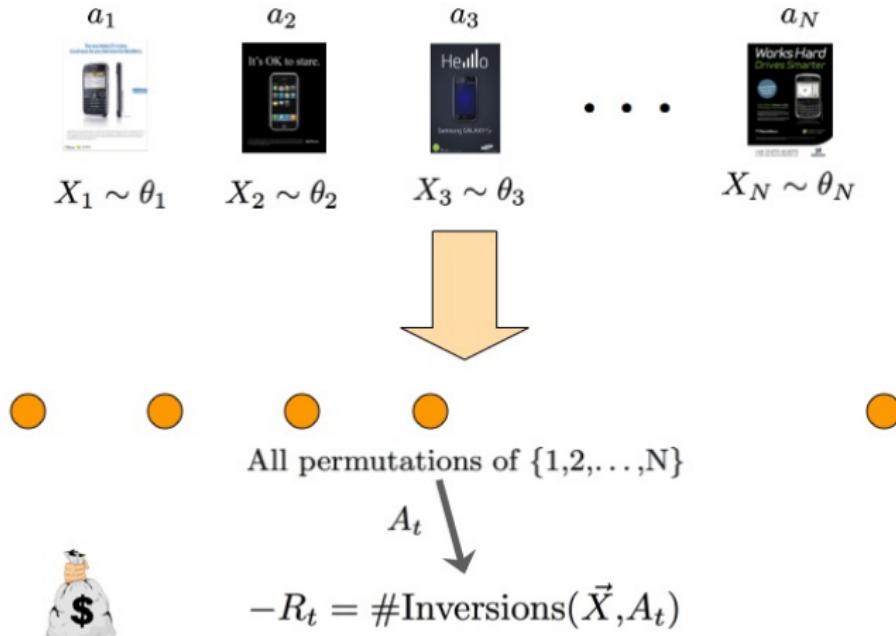
Example: Makespan

A load balancing problem

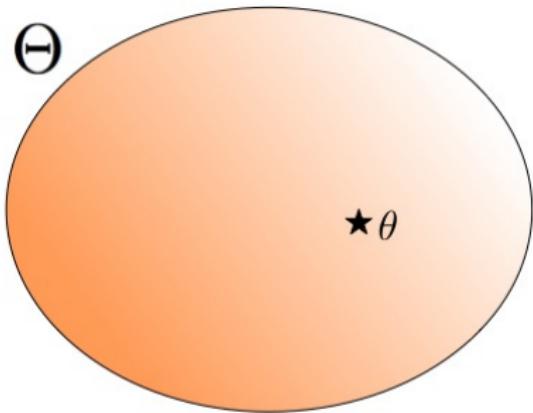
- 2 machines
- A_t = partition of jobs to machines
- Each job has a duration
- Cost per machine is the total duration
- Cost (observed) is the maximal cost of the machines.

- Number of actions is 2^n . With k machines: k^n .

Example: Ranking

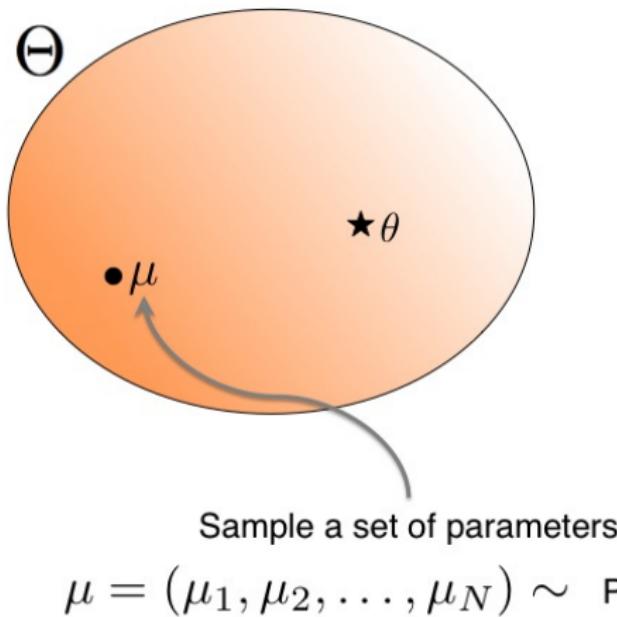


How to use Thompson Sampling?



Imagine 'fictitious' prior distribution over all parameters Θ

How to use Thompson Sampling?

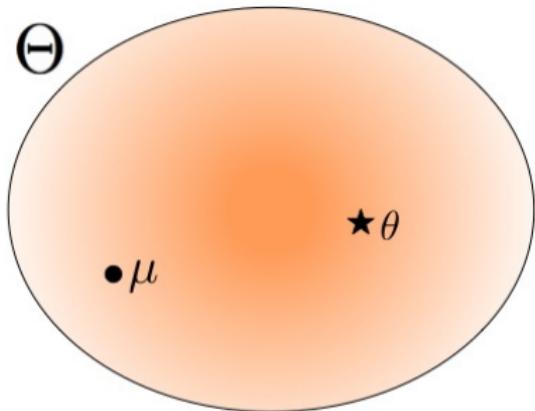


How to use Thompson Sampling?



Assume μ is true, play $\text{BestAction}(\mu)$

How to use Thompson Sampling?



Get reward Y , Update prior to posterior (Bayes' Theorem)

$$\mathbb{P}[\mu] \rightarrow \mathbb{P}[\mu|Y]$$

How to use Thompson Sampling?

Key issues:

- Easy optimization problem given “true” parameters.
- Information structure allows to update “prior”.
- We use the word prior meaning “fake” prior as no Bayesian model is assumed.
- Unleash the power of sequential Monte-Carlo method (particle filters, MCMC and others).

How to use Thompson Sampling?

Key issues:

- Easy optimization problem given “true” parameters.
- Information structure allows to update “prior”.
- We use the word prior meaning “fake” prior as no Bayesian model is assumed.
- Unleash the power of sequential Monte-Carlo method (particle filters, MCMC and others).

What can be proved?

General Bound [GopalanMMansour14]: Under any “reasonable” prior, finite actions,

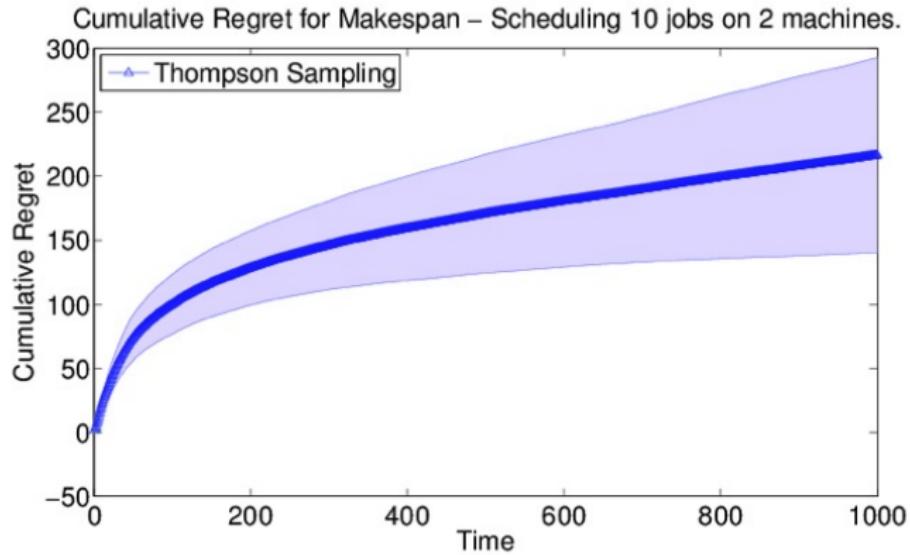
$$\text{Regret}(T) = O(C \log T)$$

with probability at least $1 - \delta$.

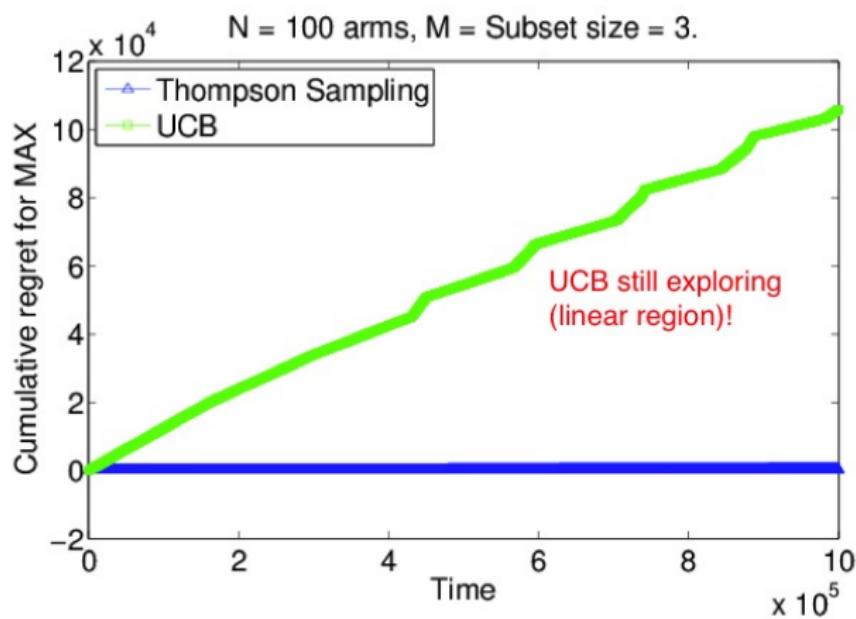
The constant C is the information complexity:

- Can be much better than number of actions
- Complex bandit structure
- Can be interpreted as an LP

Numerics: Partition Jobs for Scheduling

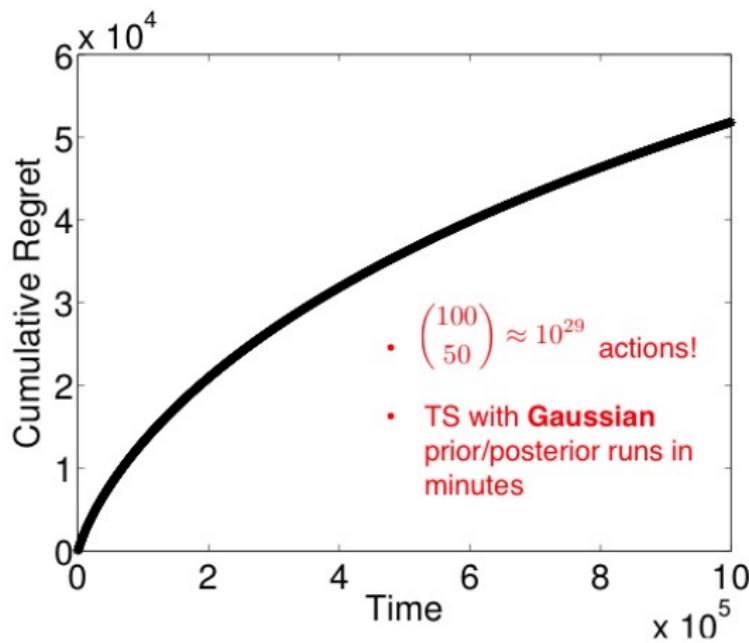


Play subset; see max



Numerics: Play Subsets. See average

(100 items, choose 50 items)



Why does Thompson Sampling work?

- Sampling the prior serves as a regularizer/perturber
- Information is processed “optimally”
- Priors must have “grain of truth”—true parameter have enough probability
- No need for an exact updating algorithm
- Thompson Sampling is **not** optimistic
- A principled approach for exploration-exploitation

Back to bandits

Part III: Best Empirical Subsampled Arm (BESA)

How to sample if you must?

Suppose I observe rewards from two arms:

- Arm 1: 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 (9 "1" and 11 "0")
- Arm 2: 0 0 1
- Is it fair to compare the empirical average of the following arms?
- NO! the arms haven't gotten the same number of opportunities to show their abilities.
- Solution: sample three rewards from the first arm; then compare them to the second arm rewards.

How to sample if you must?

Suppose I observe rewards from two arms:

- Arm 1: 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 (9 "1" and 11 "0")
- Arm 2: 0 0 1
- Is it fair to compare the empirical average of the following arms?
- NO! the arms haven't gotten the same number of opportunities to show their abilities.
- Solution: sample three rewards from the first arm; then compare them to the second arm rewards.

How to sample if you must?

Suppose I observe rewards from two arms:

- Arm 1: 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 (9 "1" and 11 "0")
- Arm 2: 0 0 1
- Is it fair to compare the empirical average of the following arms?
- NO! the arms haven't gotten the same number of opportunities to show their abilities.
- Solution: sample three rewards from the first arm; then compare them to the second arm rewards.

Subsampling for two arms

Best empirical arm is not a good idea. (Expected regret is linear.)

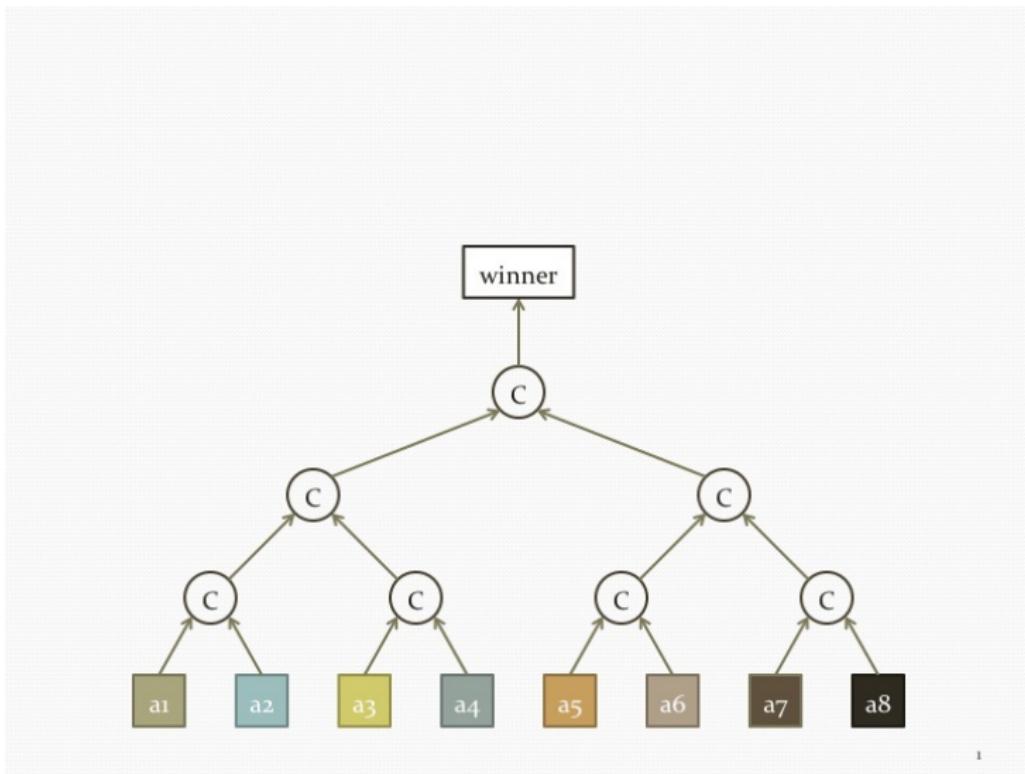
Let $T_i(n)$ is the number of times arm i sampled until n
 x_1 and x_2 are empirical means.

Case of **two** arms.

Repeat:

- ① If arms were sampled same number of times \rightarrow pick arm with higher empirical reward.
- ② If arms were sampled a different number of times (wlog $T_1(n) > T_2(n)$):
 - ① Sample $T_2(n)$ points from history of Arm 1. $s_1 :=$ average of **subsampled** data
 - ② Return arm with higher empirical reward ($x_2 > s_1$: Arm 2, $x_2 < s_1$: Arm 1)

BESA competition



1

BESA competition

Competition(i_1, \dots, i_m)

- ① If $m = 1$ return i_1
- ② $winner_1 = \text{Competition}(i_1, \dots, i_{\lfloor m/2 \rfloor})$.
- ③ $winner_2 = \text{Competition}(i_{\lfloor m/2 \rfloor + 1}, \dots, i_m)$.
- ④ Return *Compare*($winner_1, winner_2$).

BESA($1, 2, \dots, K$)

(i_1, \dots, i_K) = random permutation of $\{1, 2, \dots, K\}$

Return *Competition*(i_1, \dots, i_K)

BESA competition

Competition(i_1, \dots, i_m)

- ① If $m = 1$ return i_1
- ② $winner_1 = \text{Competition}(i_1, \dots, i_{\lfloor m/2 \rfloor})$.
- ③ $winner_2 = \text{Competition}(i_{\lfloor m/2 \rfloor + 1}, \dots, i_m)$.
- ④ Return *Compare*($winner_1, winner_2$).

BESA($1, 2, \dots, K$)

(i_1, \dots, i_K) = random permutation of $\{1, 2, \dots, K\}$

Return *Competition*(i_1, \dots, i_K)

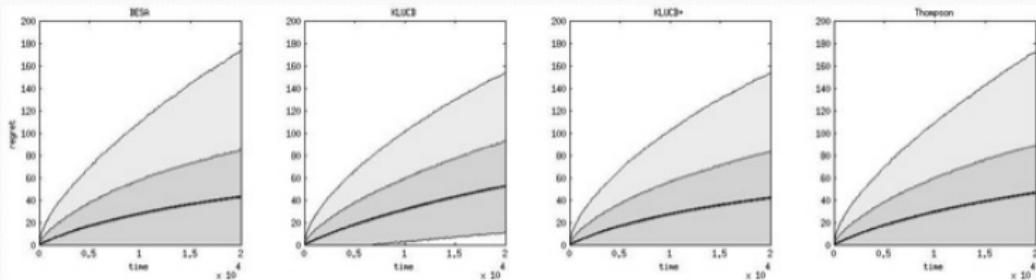
Experimental setting

In each one of the scenarios:

- $T = 20,000$
- 50,000 independent experiments
- All the rewards were drawn in advance, thus all the algorithms observe the **same** rewards if they pull the same arms.

Bernoulli(0.81) Vs. Bernoulli(0.8)

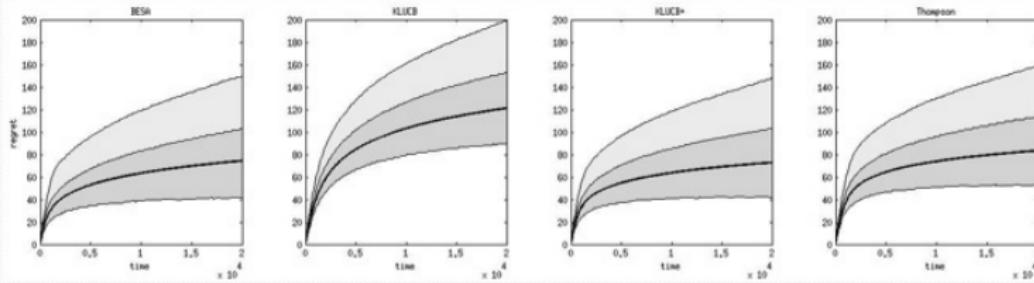
	BESA	KL-UCB	KL-UCB+	TS
Regret	42.6	52.3	41.7	46.1
Beat BESA	---	25.6%	36.9%	35.2%
Run Time	4.6X	2.8X	3.5X	X



2

Bernoulli($0.1, 3\{0.05\}, 3\{0.02\}, 3\{0.01\}$)

	BESA	KL-UCB	KL-UCB+	TS	Others*
Regret	74.4	121.2	72.8	83.4	100-400
Beat BESA	---	1.6%	35.4%	3.1%	
Run Time	13.9X	2.8X	3.1X	X	

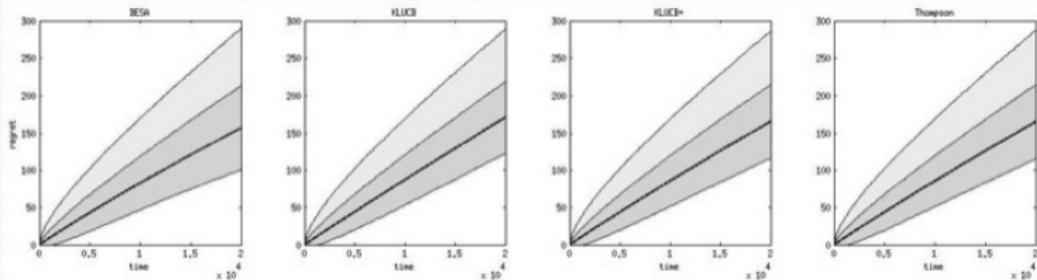


*Others: UCB, MOSS, UCB-Tuned, DMED, CP-UCB, and UCB-V

3

All Half But one 0.51

	BESA	KL-UCB	KL-UCB+	TS
Regret	156.7	170.8	165.3	165.1
Beat BESA	---	41.4%	41.6%	40.8%
Run Time	19.6X	2.8X	3X	X



4

BESA for non-Bernoulli arms

BESA does **not** assume that the arms are Bernoulli.

BESA is not optimal for all possible configurations of arms

Example:

- Arm 1: uniform in $[0, 1]$; Arm 2: uniform in $[0.2, 0.4]$
- If the first pull of the first arm gave a reward in $[0, 0.2)$, the algorithm will pull the second arm forever.

A small modification: Sample each arm M times (M is small).

BESA rocks the non-Bernoulli/misspecified case

BESA for non-Bernoulli arms

BESA does **not** assume that the arms are Bernoulli.

BESA is not optimal for all possible configurations of arms

Example:

- Arm 1: uniform in $[0, 1]$; Arm 2: uniform in $[0.2, 0.4]$
- If the first pull of the first arm gave a reward in $[0, 0.2)$, the algorithm will pull the second arm forever.

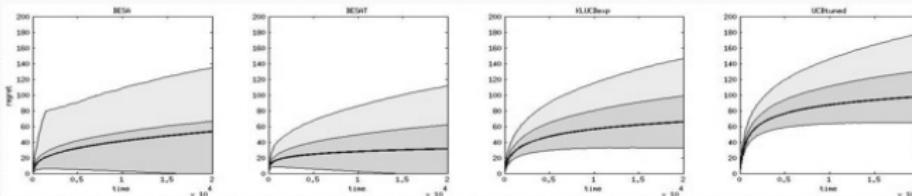
A small modification: Sample each arm M times (M is small).

BESA rocks the non-Bernoulli/misspecified case

$Exp(\frac{1}{5}), Exp(\frac{1}{4}), Exp(\frac{1}{3}), Exp(\frac{1}{2}), Exp(1)$



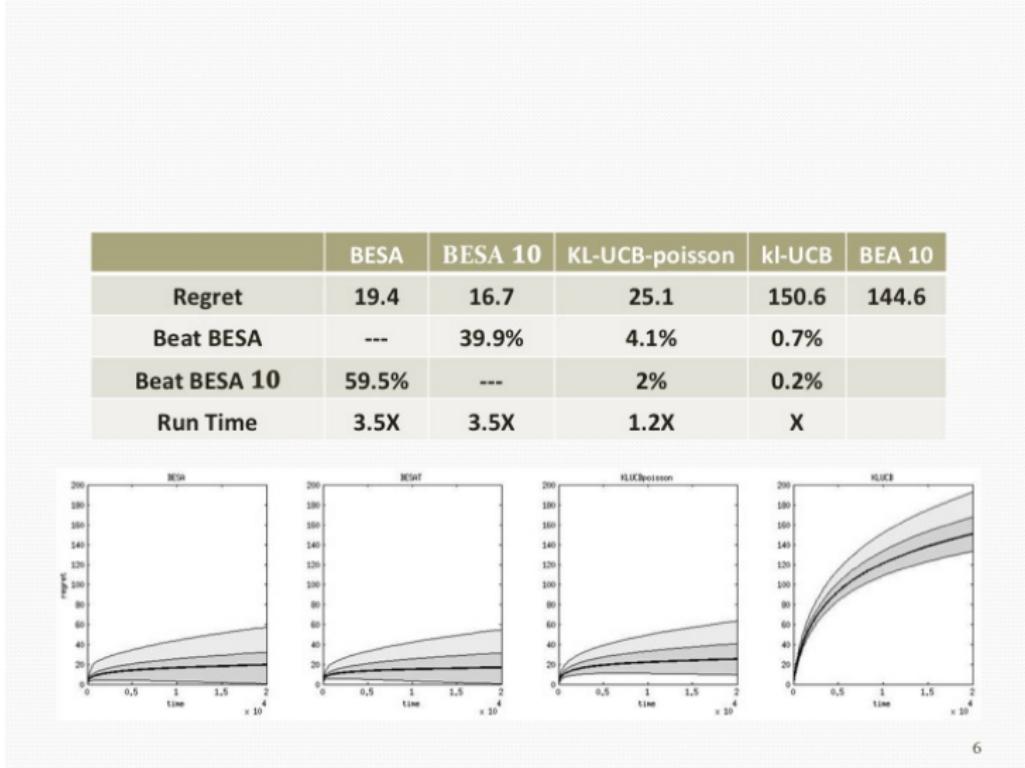
	BESA	BESA 10	KL-UCB-exp	UCB-Tuned	BEA 10	Others*
Regret	53.3	31.4	65.7	97.6	306.5	60-110,120+
Beat BESA	---	40.6%	5.7%	4.3%		
Beat BESA 10	59.4%	---	1.4%	0.9%		
Run Time	6X	7.1X	2.8X	X		



*Others: UCB, MOSS, KL-UCB, and UCB-V

5

$$\{Poisson(\frac{1}{2} + \frac{i}{3})\}_{i=1,2,\dots,6}$$



Contextual bandits

- K arms
- Context x **exogenous** (can assume in \mathbb{R} for the sake of discussion).
- Given context x , arm i has a reward distributed with param $\theta_i(x)$
- Need to select best arm for **each** context
- History is now triplets of (x_i, a_i, r_i)

- Probably the most important/practical problem in bandits
- Not a whole many algorithms out there: most rely on linearity, partitioning the space + continuity (or Thompson Sampling)

Contextual bandits

- K arms
- Context x **exogenous** (can assume in \mathbb{R} for the sake of discussion).
- Given context x , arm i has a reward distributed with param $\theta_i(x)$
- Need to select best arm for **each** context
- History is now triplets of (x_i, a_i, r_i)

- Probably the most important/practical problem in bandits
- Not a whole many algorithms out there: most rely on linearity, partitioning the space + continuity (or Thompson Sampling)

Contextual BESA

Two arms (a, b)

Define a weight function $w(x, x')$ that is 1 for $x = x'$ and decreasing if $\|x - x'\|$ grows.

For a **vector** Y of context, reward pairs ($Y_i = (x_i, r_i)$). Define:

$$wa(x, Y) = \frac{\sum_{i=1}^n w(x, \text{Context}(Y_i)) \text{Reward}(Y_i)}{\sum_{i=1}^n w(x, \text{Context}(Y_i))}$$

We also have a function $Rad(t)$ that is the radius of relevance. We will subsample according:

$$S(Y, x, t) = \{Y_i \in Y : d(\text{context}(Y_i), x) \leq Rad(t)\}$$

Contextual BESA (two arms)

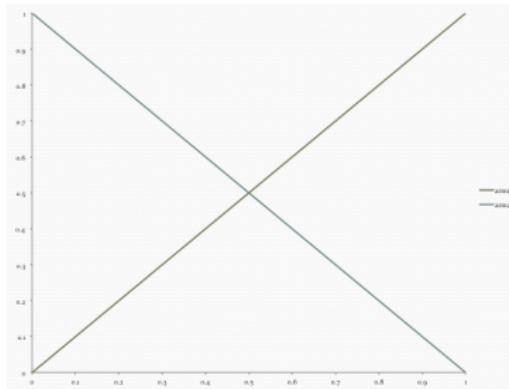
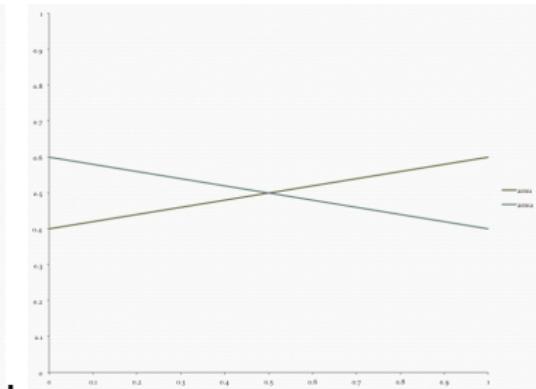
Time t , context is x_t .

- 1 $S^a = S(Y_{1:N_t(a)}^a, x_t, t)$
- 2 $S^b = S(Y_{1:N_t(b)}^b, x_t, t)$
- 3 EffSize = $\min\{|S^a|, |S^b|\}$
- 4 $I_t^a = \text{random Effsize indexes from } [1 : |S^a|]$
- 5 $I_t^b = \text{random Effsize indexes from } [1 : |S^b|]$
- 6 $\hat{\mu}_{t,a} = wa(x, S^a(I_t^a))$
- 7 $\hat{\mu}_{t,b} = wa(x, S^b(I_t^b))$
- 8 Choose maximizer $\arg \max \hat{\mu}_{t,*}$
(breaking ties for action with smaller relevant history)

Some comments on Contextual BESA

- More than two arms are handled with *Competition*(...)
- The algorithm degenerates to BESA for the case of a single context collecting **all** arms and rewards
- Algorithm requires remembering all values of contexts and rewards per arm
- Context can be anything (as long as a metric d is defined).

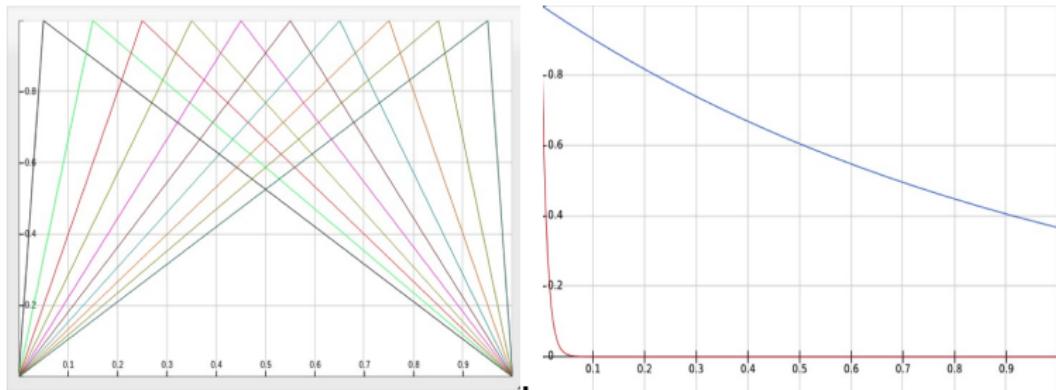
Experiments with Contextual BESA



- $d(x, z) = |x - z|$, $w(x, z) = e^{-d(x, z)}$, $Rad(t) = 1$.

Problem	Optimal Reward	BESA Reward	Regret
Left	187,500	187,383	117
Right	137,500	137,267	233

Experiments with Contextual BESA



- $d(x, z) = |x - z|$, $w(x, z) = e^{-d(x, z)}$, $w_2(x, z) = e^{-100d(x, z)}$

Paramters	Optimal Reward	BESA Reward	Regret
$w(x, z)$, $Rad(t) = 1$	227,270	197,197	30,072
$w_2(x, y)$, $Rad(t) = 1$	227,270	219,377	7,893
$w_2(x, y)$, $Rad(t) = 0.025$	227,270	226,220	1,050

Why does BESA work?

- Subsampling works
- A principled approach for exploration-exploitation
- All arms are sampled many times: subsampling does not hurt.
Some arms sampled a few times: BESA encourages exploration
- Contextual case: weighing serves as regularization (same as k in k -nearest neighbours).

Conclusion (BESA)

BESA is highly competitive to well known algorithms, based on the empirical results.

- Simple
- Flexible: no need to know the model
- Efficient
- BESA theoretical expected regret: $O(\log(n))$ for standard bandits (proof uses Thompson Sampling techniques)

Unknown complexity for contextual case

Tuning may not be easy for contextual problems

Part IV: Restricted Optimism

OFU makes sense

- But when overdone, can lead to significantly inferior performance

Posterior sampling is great: can sample complex models

- Hard to find and tune prior to get good performance

Our idea: Use posterior sampling as the algorithmic engine

- Use number of samples to control for optimism

Part IV: Restricted Optimism

OFU makes sense

- But when overdone, can lead to significantly inferior performance

Posterior sampling is great: can sample complex models

- Hard to find and tune prior to get good performance

Our idea: Use posterior sampling as the algorithmic engine

- Use number of samples to control for optimism

Part IV: Restricted Optimism

OFU makes sense

- But when overdone, can lead to significantly inferior performance

Posterior sampling is great: can sample complex models

- Hard to find and tune prior to get good performance

Our idea: Use posterior sampling as the algorithmic engine

- Use number of samples to control for optimism

Part IV: Restricted Optimism

Pseudo-algorithm (M, K parameters).

Repeat

- Use posterior sampling like in Thompson sampling
- Sample K models from prior
- Pick M -th “most optimistic” model
- Play arm under the assumption this model is true.
- Update prior-posterior

- If $K = M = 1$ we obtain standard Thompson sampling.
- Normally K is not small and M is smallish
- M is easier to tune than the prior
- Need to find the M th optimistic prior
- Can also sample from the M best models

Part IV: Restricted Optimism

Pseudo-algorithm (M, K parameters).

Repeat

- Use posterior sampling like in Thompson sampling
- Sample K models from prior
- Pick M -th “most optimistic” model
- Play arm under the assumption this model is true.
- Update prior-posterior

- If $K = M = 1$ we obtain standard Thompson sampling.
- Normally K is not small and M is smallish
- M is easier to tune than the prior
- Need to find the M th optimistic prior
- Can also sample from the M best models

Part IV: Restricted Optimism

Pseudo-algorithm (M, K parameters).

Repeat

- Use posterior sampling like in Thompson sampling
- Sample K models from prior
- Pick M -th “most optimistic” model
- Play arm under the assumption this model is true.
- Update prior-posterior

- If $K = M = 1$ we obtain standard Thompson sampling.
- Normally K is not small and M is smallish
- M is easier to tune than the prior
- Need to find the M th optimistic prior
- Can also sample from the M best models

Conclusion

New algorithms beyond OFU and variants

- Thompson Sampling can handle complex observations and actions
- BESA works well with mis-specified models
- Restricted optimism a general principle
- Much to do on the theory side
- What are the underlying concepts behind the two approaches?
- Extensions to Markov models

We are hiring (postdocs and PhD students): email me
(shie@ee.technion.ac.il) for details!