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Outline

Dynamic Random Graphs: the data



Dynamic interactions data

Types of data and their representation
One should distinguish between

» Long time relations (eg social relations, physical wiring of
routers, ... ): graphs sequences

» Short time interactions (eg: pone call, physical encounter,
...): temporal networks or stream links

For a nice review, see [Holme(2015)].
Pictures that follow are from [Gaumont(2016)].



Graphs sequences

T=1 T=2 T=3

FIGURE 1.3 — Exemple de série de graphes sur trois intervalles de temps.
Remarks

» In practice, there could be small variations in the
individuals present at each time step,
» These data are sometimes obtained through aggregation

» possible loss of information
» problem of choosing the time window for aggregation.



Temporal networks

SESIRIARYE

T=3.6

FIGURE 1.5 — Graphe temporel avec des ajouts de lien représentés en traits
épais verts et des suppressions de lien représentées par des liens pointillés
rouges.

Remarks

» Again, variations in node presence/absence is possible,
» Here, there is no loss of information.

» Ideal setup in the sense that most of the time, we do not
have all this knowledge.



Links streams [Latapy et al.(2017)]
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Remarks

» Here, there is no underlying graph!

» One could add in the data (and in its visualisation) the info
that one individual is not present during some time periods,

» Again, no loss of information.
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Graphs clustering: different approaches



Graph clustering: why and how? I

Why?
» Networks are intrinsically heterogeneous: need to account
for different nodes behaviours,
» Summarise network information through a higher-level
view (zoom-out the network),

» Some networks exhibit modularity: modules or
communities are groups of nodes with high number of
intra-connections and low number of outer-connections;

» Other structures might be of interest: hierarchical groups,
hubs, periphery nodes, homophilic/heterophilic structures,



Graph clustering: why and how? II

How?
Many methods, with different aims
» Searching for communities,
» Modularity-based approaches;
» Random walk algorithms;
» Spectral clustering (NB: absolute spectral clust. also
captures heterophilic struct.);
» Latent space models by [Hoff et al.(2002)].
» Searching for groups, without any a priori on their
structure: Stochastic block models (SBMs).
SBMs search for groups of nodes with a similar
connectivity behaviour towards the other groups.

» Recently, mixtures of ERGMs [Vu et al.(2013)].
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The stochastic block model



Stochastic block model (binary graphs)
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Binary case (parametric model with 6 = (7,7))

» K groups (=colors «ee).

> {Zi}lgign i.i.d. vectors Z,L = (Zﬂ, ey ZzK) ~ M(l,ﬂ'),
with 7 = (m1,..., 7K ) groups proportions. Z; not observed
(latent).

» Observations: presence/absence of an edge {A;;}i1<i<j<n,

» Conditional on {Z;}’s, the r.v. A;; are independent
B(’YZiZj)‘



Stochastic block model (weighted graphs)
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Weighted case (parametric model with 6 = (m, (1), ~(2)))

» Latent variables: idem

» Observations: "weights’ A;; , where A;; =0 or
Aij € R*\ {0},

» Conditional on the {Z;}’s, the random variables A;; are
independent with distribution

p’ZiZj() ’VZZ fGs (ZQ)Z)jL(l*'Y(Zl)Z )do ()



SBM classification vs community detection

SBM classification

» Nodes classification induced by the model reflects a
common connectivity behaviour;

» Community detection methods focus on communities

» Toy example

SBM clusters Community detection or SBM




Particular cases and generalisations

Particular case: Affiliation model (planted partition)

y=1: - (> = community detection)

Some generalisations

» Overlapping groups
[Latouche et al.(2011), Airoldi et al.(2008)] for binary
graphs; SBM with covariates; Degree corrected SBM;. ..

» Latent block models (LBM), for array data or bipartite
graphs [Govaert and Nadif(2003)];

» Nonparametric SBM (graphon);
» Dynamic SBM



Overview of algorithms

Goal is MLE. Likelihood computation is untractable for n not
small.

Parameter estimation

» em algorithm not feasible because latent variables are not
independent conditional on observed ones:
P{Zi}il{Aij}ig) # 11, P(Zil{ Aij }ij)
» Alternatives:
» Gibbs sampling
» Variational approximation to em.
» Ad-hoc methods: Composite likelihood or Moment methods
[Ambroise and M.(2012), Bickel et al.(2011)]; Degrees
[Channarond et al.(2012)];



Variational approximation principle I

Log-likelihood decomposition
LA(0) :=1logP(A;0) =logP(A,Z;0) —logP(Z|A;0) and for
any distribution Q on Z,

La(0) = Eq(logP(A, Z;0)) + H(Q) + LL(Q|P(Z]A; )

em principle

> e-step: maximise the quantity Eg(logP(A, Z; 1)) + H(Q)
with respect to Q. This is equivalent to minimizing
KL(Q|P(Z|A;01)) with respect to Q.

» m-step: keeping now Q fixed, maximize the quantity
Eg(logP(A,Z;0)) + H(Q) with respect to 8 and update
the parameter value 0+1) o this maximiser. This is
equivalent to maximizing the conditional expectation
Eg(logP(A,Z;6)) w.r.t. 6.



Variational approximation principle II
Variational em

» e-step: search for an optimal Q within a restricted class Q,
e.g. class of factorized distr.

Qz) =[[az), o = argmin KL(Q|P(Z|A;01))

i=1

» m-step: unchanged, i.e.
0+ = argmax, Eg-(log P(A, Z; 9))

» A consequence of L > 0 is the lower bound
La(0) > Eg(logP(A,Z;0)) + H(Q)

So that the variational approximation consists in
maximizing a lower bound on the log-likelihood. why does it

make sense 7



Model selection

How do we choose the number of groups K?
Frequentist setting

» Maximal likelihood is not available (thus neither AIC or
BIC),

» ICL criterion is used [Daudin et al.(2008)] (no consistency
result on that).

Bayesian setting
» MCMC approach to select number of LBM groups
[Wyse and Friel(2012)].

» Exact ICL requires greedy search optimization
[Come and Latouche(2015)]



(Some) SBMs packages/codes

VEM implementations

> MixNet
http://www.math-evry.cnrs.fr/logiciels/mixnet is a
C/C++ code and MixeR R package on the CRAN: for binary
SBM, directed or not;

» 0SBM R package R for Overlapping SBM,
http://www.math-evry.cnrs.fr/logiciels/osbm

» Blockmodels R package binary/valued SBM, possibly with
covariates


http://www.math-evry.cnrs.fr/logiciels/mixnet
http://www.math-evry.cnrs.fr/logiciels/osbm
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Clustering dynamic networks
Clustering graphs sequences
Clustering links streams (with no duration)
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Follow the groups through time

Label switching issue in the dynamic context

t=1; t=1y



Follow the groups through time

Label switching issue in the dynamic context

t=1 t=ty
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If the 2 classifications are constructed independently, then it’s

impossible to follow the groups evolution. It’s thus mandatory
to do a joint clustering of the graphs.



Dynsbm: a dynamic stochastic blockmodel
Model [M. & Miele(2017)]

» We simply combine a latent Markov chain with weighted
SBMs;

» Our graphs may be directed or undirected, binary or
weighted; some individuals can appear or disappear;

» Groups and model parameters may change through time;

» Careful discussion on identifiability conditions on the
model.

Inference
» VEM algorithm to infer the nodes groups across time and
the model parameters;

» Model selection criterion (ICL type) to select for the
number of groups.



Dynamics: Markov chain on latent groups
Latent Markov chain

> Across individuals: (Z;)1<;<n iid,

» Across time: Each Z; = (Z!)1<;<r is a Markov chain on

{1,...,Q} with transition ™ = (74y )1<4,¢'<@ and initial
stationary distribution o = (a1, ..., aq).
7' Z{'71 ™ Z{ ™ Z:«#l 7'
EE P (S P Y
SR P S S I SN
o " e

Goal
Infer the parameter 6 = (7, 3,7), recover the clusters {Zf}”
and follow their evolution through time.



Application on ecological networks [Miele & M.(2017)] I

;l PP Ants dataset [Mersch et al.(2013)]

T=10, N=152

Selection of 3 social groups.

T
DT e

jﬂ groups 1 and 2.
i 5

5555555

Low turnover : 47% of ants do
not switch group.




Application on ecological networks [Miele & M.(2017)]
IT

Group 2: a community.

Group 3: contacts with all ants from
any groups.

Group 1: avoid contacts with group 2.

Perfect match with the three
functional category groups: nurses,
foragers and cleaners

PR
group2-1 2

E

group 3 -3

|nurses foragers cleaners

,,,,,,,,, |- 1] 42 0 0
2 0 29 2
3 4 1 29

(75% of ants, staying at least 8/10 steps in same group)
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Longitudinal interaction networks = Stream links view

t1 to t3 SR A




Longitudinal interaction networks = point process view
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(O interactions between individuals i, k

<> interactions between individuals k, [

» We observe a marked point process: the mark is a pair of
individuals (7, j) that interact at time ¢.

» Goal: cluster the individuals ¢ (not the processes Nj; !)



ppsbm: a dynamic point process SBM
Model characteristics [M., Rebafka, Villers(2018)]

» Pointwise interactions with no duration only; Individuals
are always present;

» Groups are constant through time;

» Conditional on the latent groups Z;, Z;, the point process
N;; is a non-homogeneous point process with
(nonparametric) intensity ¢ — a%%i(t).

» Recover latent groups Z = (Z1,...,Z,) and estimate the
intensities per groups pairs {a(q’l)(-)}1§q<l§Q with VEM

Inference characteristics

» Procedure is semi-parametric: intensities may either be
estimated through histograms (with adaptive selection of
the partition), or kernels.

» ICL to select the number of groups Q.



London Santander cycles

Data

» Cycles journeys from the Santander cycles hiring stations:
departure station, arrival station, time of journey start.

> 1st dataset from Wed. February 1st, 2012, with n = 415
stations (=individuals), and M = 17 631 journeys (time
points)

» 2nd dataset from Thursday February 2nd, 2012: n = 417
stations, M = 16 333 journeys.

Model selection of the number of groups )
ICL selects 6 groups for both days.



London Santander cycles: geographical projection of the
clusters




The smallest cluster x |

» Contains only 2 bike stations, located at Waterloo and
King’s Cross

» among the stations with highest activities

Kings Cross Kings Cross

Barplots of outgoing
- (Ni.(-)) and incoming
(N.i(-)) processes from
the 2 stations ¢ in the
smallest cluster: volumes
of connections to all other

Outgoing counts
a
Incoming counts
5

Time Time

Waterloo 3 7 Waterloo 3 Stations during day 1 .

Outgoing counts
Incoming counts

of ’outgoing’ stations in
the morning and ’ingoing’
stations in the evening.

“ The cluster is composed
dl




The smallest cluster x 11

» Stations close to Victoria and Liverpool Street stations also
have high activity but not the same temporal profile so
they cluster differently,

» This cluster x is due to a specific temporal profile, that
would not be captured through a snapshot approach.

» The cluster has strong connections with cluster ¢ that
corresponds to business city center.



Conclusions

Dynamic modeling of interactions is still in its early
developments, lot of things to improve.



Thank you for your attention !
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