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Dynamic interactions data

Types of data and their representation

One should distinguish between

I Long time relations (eg social relations, physical wiring of
routers, . . . ): graphs sequences

I Short time interactions (eg: pone call, physical encounter,
. . . ): temporal networks or stream links

For a nice review, see [Holme(2015)].
Pictures that follow are from [Gaumont(2016)].



Graphs sequences
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en fonction des contacts qui existent entre les personnes. Il est donc tout naturel de
s’appuyer initialement sur un graphe dont les nœuds représentent des personnes et les
liens représentent les interactions entre personnes. En plus du graphe, il est nécessaire
d’ajouter l’état de chaque nœud, e.g. sain ou infecté. Ainsi, un nœud sain ne peut de-
venir infecté que s’il est relié à un nœud infecté dans le graphe. Ce genre de modèles
met donc en avant un chemin de diffusion, e.g. une suite de personnes transmettant la
maladie de l’un à l’autre.

Les premiers travaux [PSV01] s’appuient sur un graphe d’interactions de personnes
agrégeant toute l’information temporelle. Or, la prise en compte du temps dans ce
contexte est primordiale car il est possible que le chemin d’infections simulé dans le
graphe agrégé ne soit pas réalisable si l’on prend en compte le temps. Imaginons 3
personnes A, B, C telles que A et B interagissent à l’instant 1, et B et C interagissent
à l’instant 2. Dans le graphe agrégé, il est possible pour C d’infecter A via B alors que
dans la réalité cela n’est pas possible. L’ajout du temps a donc une forte influence sur
les résultats obtenus dans le contexte épidémiologique et ce phénomène est d’ailleurs
très étudié [GPBC15, KKP+11, JPKK14, HK14, HL14, SWP+14, PJHS14].

Une fois reconnue l’importance du temps, il est nécessaire de trouver un nouveau
formalisme étendant la théorie des graphes pour en tenir compte. Nous présentons
maintenant différentes extensions possibles de la théorie des graphes, dans les sous-
sections 1.3.1 et 1.3.2. Nous détaillons également comment la recherche de commu-
nautés se transpose dans ces nouveaux formalismes et plus généralement quels sont
les problèmes qu’ils permettent de résoudre. Des états de l’art dans ce domaine ont
d’ailleurs déjà été esquissés [BBC+14, CA14, HKW14].

1.3.1 Extensions avec pertes d’informations temporelles

Séries de graphes
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FIGURE 1.3 – Exemple de série de graphes sur trois intervalles de temps.

La première solution qui a été apportée ne prend le temps en compte que partiel-
lement. Il s’agit de manipuler une série de graphes dont chaque graphe représente le
réseau durant un intervalle de temps donné. Ainsi, il est possible d’appliquer les outils
de la théorie des graphes sur chaque intervalle. Cependant chaque intervalle de temps
est représenté par un graphe agrégé. Il y a donc toujours une perte d’information. Plus
formellement, une série de graphe est définie par G = {Gi}i<T où T est un entier (voir
la figure 1.3).

Remarks

I In practice, there could be small variations in the
individuals present at each time step,

I These data are sometimes obtained through aggregation
I possible loss of information
I problem of choosing the time window for aggregation.



Temporal networks

1.3. Extensions temporelles des graphes 21

Les graphes multicouches représentent les données évoluant dans le temps mais ils
modélisent aussi très bien d’autres situations. Par exemple, ils représentent facilement
les différents moyens de transport dans une ville où chaque moyen de transport (bus,
voiture, métro ...) est représenté par une couche. Plusieurs travaux [DSRC+13, KAB+14,
BBC+14, WFZ15] décrivent les graphes multicouches et leurs applications.

Détection de communautés Grâce au formalisme de graphe multicouches, il est pos-
sible de traiter le temps de manière un peu plus fine que dans les séries de graphes
car il permet de mieux suivre l’évolution des nœuds. Comme un graphe multicouches
est un graphe, il est possible d’adapter les méthodes existantes pour tenir compte des
différents types de liens. C’est le cas d’Infomap [DLAR15], de la modularité [MRM+10,
BPW+13, BPW+16] et du SBM [SSTM15, Pei15].

Résumé
Les séries de graphes, les tenseurs 3D et les graphes multicouches permettent de
prendre en compte le temps tout en autorisant l’utilisation de méthodes conçues pour
des graphes statiques. Or, ces approches reposent sur une découpe du temps en sous-
intervalles durant lesquels le temps n’est plus pris en compte. Il peut être délicat de
définir ces intervalles de temps : la construction des graphes agrégés entraı̂ne une
perte d’information temporelle et cela a une influence sur la précision temporelle des
structures communautaires qui sont manipulables. Il n’est pas envisageable d’aug-
menter le nombre d’intervalles de temps car, d’une part, des graphes agrégés auraient
très peu de liens et, d’autre part, le temps de calcul serait très fortement augmenté.

1.3.2 Extensions sans perte d’information temporelle

Graphes temporels
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FIGURE 1.5 – Graphe temporel avec des ajouts de lien représentés en traits
épais verts et des suppressions de lien représentées par des liens pointillés

rouges.

Les graphes temporels (Time Varying Graph ou Evolving Graph) permettent de te-
nir compte de l’ensemble de l’information temporelle. Pour cela au lieu de considérer
des intervalles de temps, ils considèrent l’ensemble des modifications qui affectent le
graphe : les ajouts et retraits de liens. En pratique, cela revient à considérer sur chaque
lien une fonction de présence dépendant du temps qui vaut 1 à un instant t si le lien
existe à cet instant et 0 sinon. Ainsi, il est possible de connaı̂tre la structure de graphe à
chaque instant. Ce formalisme est présenté dans différents travaux [CFQS11, WZF15]
et illustré dans la figure 1.5. Dans cette figure, on voit apparaı̂tre l’ordre de modifica-
tion du graphe. Tout d’abord, les liens (b, f) et (c, d) disparaissent puis les liens (b, e) et
(f, c) apparaissent chacun leur tour.

Remarks

I Again, variations in node presence/absence is possible,

I Here, there is no loss of information.

I Ideal setup in the sense that most of the time, we do not
have all this knowledge.



Links streams [Latapy et al.(2017)]
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Détection de communautés Dans un graphe temporel, une structure de graphe existe
à chaque instant. Il est donc possible de calculer après chaque modification l’évolution
d’une métrique. Par exemple, il est possible de calculer après l’ajout d’un lien le nou-
veau degré interne des nœuds concernés par ce changement. En fonction de l’évolution
de cette métrique, on décide alors d’ajouter ou de retirer un nœud voire de fusionner
deux communautés. Li et al. [LHB+12] se basent sur le nombre de liens que partage
un nœud avec les communautés environnantes. Ainsi, un nœud est toujours dans la
communauté avec laquelle il partage le plus de liens. Shang et al. [SLX+14], Cordeiro
et al. [CSG16] et Sun et al. [SHZ+14] se basent sur l’évolution de la modularité. Ce-
pendant, ces approches ne permettent pas de représenter l’ensemble des évolutions
de communauté possibles, en particulier l’apparition d’une nouvelle communauté.
C’est pourquoi l’évolution de la structure courante peut mener à une structure ayant
une faible qualité. Une autre approche a été proposée par Cazabet et al. [CAH10] afin
d’améliorer l’évolution de la partition. Ils utilisent une métrique locale basée sur le
nombre de chemins de longueur 2 existant entre un nœud et une communauté. Après
chaque modification, ils considèrent également la possibilité de créer une nouvelle
communauté sous la forme d’une petite clique. Ainsi, ils assurent une meilleure qualité
de la partition au cours de l’évolution.

Flots de liens
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FIGURE 1.6 – Flot de liens entre 6 nœuds ( en ordonnées) au cours du
temps (en abscisses). Dans l’exemple, il existe un lien entre a et b durant

l’intervalle [4, 6].

Dans les graphes temporels, toute l’information temporelle est gardée. Cependant,
l’intuition derrière cette méthode est qu’il existe une structure de graphe à chaque
instant. Cette hypothèse n’est pas toujours vérifiée, en particulier lorsque les liens ap-
paraissent et disparaissent très rapidement. C’est le cas des appels téléphoniques qui
durent rarement plus d’une heure ou bien de manière plus frappante avec les SMS et
les courriels qui n’ont même pas de durée. Dans ces contextes, il n’est pas possible de
supposer qu’à chaque instant une structure de graphe pertinente existe.

Il faut donc un formalisme et des métriques qui s’adaptent à ce contexte. C’est
pour répondre à ce besoin que le formalisme de flot de liens a été pensé. Le but est
de construire un objet ne présupposant aucune structure et qui stocke toute l’informa-
tion disponible. Même si le formalisme ne présuppose aucune contrainte structurelle,
il se peut que le réseau représenté en ait. Par exemple dans les télécommunications,
une personne ne peut appeler qu’une ou deux personnes en même temps. Plusieurs

Remarks

I Here, there is no underlying graph!

I One could add in the data (and in its visualisation) the info
that one individual is not present during some time periods,

I Again, no loss of information.
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Graph clustering: why and how? I

Why?

I Networks are intrinsically heterogeneous: need to account
for different nodes behaviours,

I Summarise network information through a higher-level
view (zoom-out the network),

I Some networks exhibit modularity: modules or
communities are groups of nodes with high number of
intra-connections and low number of outer-connections;

I Other structures might be of interest: hierarchical groups,
hubs, periphery nodes, homophilic/heterophilic structures,
. . .



Graph clustering: why and how? II

How?
Many methods, with different aims

I Searching for communities,
I Modularity-based approaches;
I Random walk algorithms;
I Spectral clustering (NB: absolute spectral clust. also

captures heterophilic struct.);
I Latent space models by [Hoff et al.(2002)].

I Searching for groups, without any a priori on their
structure: Stochastic block models (SBMs).
SBMs search for groups of nodes with a similar
connectivity behaviour towards the other groups.

I Recently, mixtures of ERGMs [Vu et al.(2013)].
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Stochastic block model (binary graphs)
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Binary case (parametric model with θ = (π,γ))

I K groups (=colors •••).
I {Zi}1≤i≤n i.i.d. vectors Zi = (Zi1, . . . , ZiK) ∼M(1,π),

with π = (π1, . . . , πK) groups proportions. Zi not observed
(latent).

I Observations: presence/absence of an edge {Aij}1≤i<j≤n,

I Conditional on {Zi}’s, the r.v. Aij are independent
B(γZiZj ).



Stochastic block model (weighted graphs)

1 2

3

4

5

6

7

84

5

6

7

8

γ••

9

10

γ••

γ••

γ••

γ••

n = 10, Z5• = 1

A12 ∈ R, A15 = 0

Weighted case (parametric model with θ = (π,γ(1),γ(2)))

I Latent variables: idem

I Observations: ’weights’ Aij , where Aij = 0 or
Aij ∈ Rs \ {0},

I Conditional on the {Zi}’s, the random variables Aij are
independent with distribution

µZiZj (·) = γ
(1)
ZiZj

f(·, γ(2)
ZiZj

) + (1− γ(1)
ZiZj

)δ0(·)

(Assumption: f has continuous cdf at zero).



SBM classification vs community detection

SBM classification

I Nodes classification induced by the model reflects a
common connectivity behaviour;

I Community detection methods focus on communities

I Toy example

SBM clusters Community detection or SBM



Particular cases and generalisations

Particular case: Affiliation model (planted partition)

γ =

α . . . β
...

. . .
...

β . . . α

 (α� β =⇒ community detection)

Some generalisations

I Overlapping groups
[Latouche et al.(2011), Airoldi et al.(2008)] for binary
graphs; SBM with covariates; Degree corrected SBM;. . .

I Latent block models (LBM), for array data or bipartite
graphs [Govaert and Nadif(2003)];

I Nonparametric SBM (graphon);

I Dynamic SBM



Overview of algorithms

Goal is MLE. Likelihood computation is untractable for n not
small.

Parameter estimation

I em algorithm not feasible because latent variables are not
independent conditional on observed ones:
P({Zi}i|{Aij}i,j) 6=

∏
i P(Zi|{Aij}i,j)

I Alternatives:
I Gibbs sampling
I Variational approximation to em.
I Ad-hoc methods: Composite likelihood or Moment methods

[Ambroise and M.(2012), Bickel et al.(2011)]; Degrees
[Channarond et al.(2012)];



Variational approximation principle I

Log-likelihood decomposition

LA(θ) := logP(A;θ) = logP(A,Z;θ)− logP(Z|A;θ) and for
any distribution Q on Z,

LA(θ) = EQ(logP(A,Z;θ)) +H(Q) +KL(Q‖P(Z|A;θ))

em principle

I e-step: maximise the quantity EQ(logP(A,Z;θ(t))) +H(Q)
with respect to Q. This is equivalent to minimizing
KL(Q‖P(Z|A;θ(t))) with respect to Q.

I m-step: keeping now Q fixed, maximize the quantity
EQ(logP(A,Z;θ)) +H(Q) with respect to θ and update
the parameter value θ(t+1) to this maximiser. This is
equivalent to maximizing the conditional expectation
EQ(logP(A,Z;θ)) w.r.t. θ.



Variational approximation principle II

Variational em

I e-step: search for an optimal Q within a restricted class Q,
e.g. class of factorized distr.

Q(Z) =

n∏
i=1

Q(Zi), Q? = argmin
Q∈Q

KL(Q‖P(Z|A;θ(t)))

I m-step: unchanged, i.e.
θ(t+1) = argmaxθ EQ?(logP(A,Z;θ))

I A consequence of KL ≥ 0 is the lower bound

LA(θ) ≥ EQ(logP(A,Z;θ)) +H(Q)

So that the variational approximation consists in
maximizing a lower bound on the log-likelihood. Why does it

make sense ?



Model selection

How do we choose the number of groups K?

Frequentist setting

I Maximal likelihood is not available (thus neither AIC or
BIC),

I ICL criterion is used [Daudin et al.(2008)] (no consistency
result on that).

Bayesian setting

I MCMC approach to select number of LBM groups
[Wyse and Friel(2012)].

I Exact ICL requires greedy search optimization
[Côme and Latouche(2015)]



(Some) SBMs packages/codes

VEM implementations

I MixNet

http://www.math-evry.cnrs.fr/logiciels/mixnet is a
C/C++ code and MixeR R package on the CRAN: for binary
SBM, directed or not;

I OSBM R package R for Overlapping SBM,
http://www.math-evry.cnrs.fr/logiciels/osbm

I Blockmodels R package binary/valued SBM, possibly with
covariates

http://www.math-evry.cnrs.fr/logiciels/mixnet
http://www.math-evry.cnrs.fr/logiciels/osbm
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Follow the groups through time

Label switching issue in the dynamic context
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Follow the groups through time

Label switching issue in the dynamic context
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If the 2 classifications are constructed independently, then it’s
impossible to follow the groups evolution. It’s thus mandatory
to do a joint clustering of the graphs.



Dynsbm: a dynamic stochastic blockmodel

Model [M. & Miele(2017)]

I We simply combine a latent Markov chain with weighted
SBMs;

I Our graphs may be directed or undirected, binary or
weighted; some individuals can appear or disappear;

I Groups and model parameters may change through time;

I Careful discussion on identifiability conditions on the
model.

Inference

I VEM algorithm to infer the nodes groups across time and
the model parameters;

I Model selection criterion (ICL type) to select for the
number of groups.



Dynamics: Markov chain on latent groups

Latent Markov chain

I Across individuals: (Zi)1≤i≤N iid,

I Across time: Each Zi = (Zti )1≤t≤T is a Markov chain on
{1, . . . , Q} with transition π = (πqq′)1≤q,q′≤Q and initial
stationary distribution α = (α1, . . . , αQ).

6 C. Matias and V. Miele
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Figure 1. Dependency structures of the model. Top: general view corresponding to hidden Markov
model (HMM) structure; Middle: details on latent structure organisation corresponding to N different
iid Markov chains Zi = (Zt

i )1≤t≤T across individuals; Bottom: details for fixed time point t corre-
sponding to SBM structure.

Goal
Infer the parameter θ = (π,β,γ), recover the clusters {Zti}i,t
and follow their evolution through time.



Application on ecological networks [Miele & M.(2017)] I

Ants dataset[Mersch et al.(2013)]

T=10, N=152

Selection of 3 social groups.

Low turnover : 47% of ants do
not switch group.

No group switches between
groups 1 and 2.



Application on ecological networks [Miele & M.(2017)]
II
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Group 2: a community.
Group 3: contacts with all ants from
any groups.
Group 1: avoid contacts with group 2.

Perfect match with the three
functional category groups: nurses,
foragers and cleaners

nurses foragers cleaners

1 42 0 0
2 0 29 2
3 4 1 29

(75% of ants, staying at least 8/10 steps in same group)
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Longitudinal interaction networks = Stream links view
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Longitudinal interaction networks = point process view

0 Tt1 t2 t3 t4 t5 t6 t7

interactions between individuals i, j

interactions between individuals i, k

interactions between individuals k, l

I We observe a marked point process: the mark is a pair of
individuals (i, j) that interact at time t.

I Goal: cluster the individuals i (not the processes Nij !)



ppsbm: a dynamic point process SBM

Model characteristics [M., Rebafka, Villers(2018)]

I Pointwise interactions with no duration only; Individuals
are always present;

I Groups are constant through time;

I Conditional on the latent groups Zi, Zj , the point process
Nij is a non-homogeneous point process with
(nonparametric) intensity t 7→ αZi,Zj (t).

I Recover latent groups Z = (Z1, . . . , Zn) and estimate the
intensities per groups pairs {α(q,l)(·)}1≤q<l≤Q with VEM

Inference characteristics

I Procedure is semi-parametric: intensities may either be
estimated through histograms (with adaptive selection of
the partition), or kernels.

I ICL to select the number of groups Q.



London Santander cycles

Data

I Cycles journeys from the Santander cycles hiring stations:
departure station, arrival station, time of journey start.

I 1st dataset from Wed. February 1st, 2012, with n = 415
stations (=individuals), and M = 17 631 journeys (time
points)

I 2nd dataset from Thursday February 2nd, 2012: n = 417
stations, M = 16 333 journeys.

Model selection of the number of groups Q

ICL selects 6 groups for both days.



London Santander cycles: geographical projection of the
clusters
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Clustering for 1st dataset.



The smallest cluster x I

I Contains only 2 bike stations, located at Waterloo and
King’s Cross

I among the stations with highest activities
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Waterloo 3
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Waterloo 3

Barplots of outgoing
(Ni·(·)) and incoming
(N·i(·)) processes from
the 2 stations i in the
smallest cluster: volumes
of connections to all other
stations during day 1.

The cluster is composed
of ’outgoing’ stations in
the morning and ’ingoing’
stations in the evening.



The smallest cluster x II

I Stations close to Victoria and Liverpool Street stations also
have high activity but not the same temporal profile so
they cluster differently,

I This cluster x is due to a specific temporal profile, that
would not be captured through a snapshot approach.

I The cluster has strong connections with cluster � that
corresponds to business city center.



Conclusions

Dynamic modeling of interactions is still in its early
developments, lot of things to improve.



Thank you for your attention !
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