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Principal Component Analysis (PCA) (Pearson, 1901)

I Suppose X ∼ P be a random variable in Rd with mean µ and
covariance matrix Σ.

I Find a direction w ∈ {v : ‖v‖2 = 1} such that

Var[〈w ,X 〉2] = 〈w ,Σw〉2

is maximized.

I Find a direction w ∈ {v : ‖v‖2 = 1} such that

E‖(X − µ)− 〈w , (X − µ)〉2w‖2
2

is minimized.

I The formulations are equivalent and the solution is the eigenvector
of the covariance matrix Σ corresponding to the largest eigenvalue.

I Can be generalized to multiple directions (find a subspace...).

I Applications: dimensionality reduction.
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Kernel PCA

I Nonlinear generalization of PCA (Schölkopf et al., 1998).

I X 7→ Φ(X ) through the feature map Φ and apply PCA.

I The choice of Φ determines the degree of information we capture
about X .

I Suppose Φ(X ) = (1,X ,X 2,X 3, . . .), then the covariance of Φ(X )
captures the higher order moments of X .

I Φ is not explicitly specified but implicitly specified through a positive
definite kernel function, k(x , y) = 〈Φ(x),Φ(y)〉.



Kernel PCA: Functional Version

I Find f ∈ {g ∈ H : ‖g‖H = 1} such that Var[f (X )] is maximized,
i.e.,

f ∗ = arg sup
‖f ‖H=1

Var[f (X )]

where H is a reproducing kernel Hilbert space (evaluational functionals

f 7→ f (x) are bounded for all x ∈ X ) of real-valued functions (Aronszajn,

1950).

I ∃ unique k : X × X → R such that k(·, x) ∈ H for all x ∈ H and
f (x) = 〈k(·, x), f 〉H for all f ∈ H, x ∈ X .

I k is called the reproducing kernel of H as

k(x , y) = 〈k(·, x)︸ ︷︷ ︸
Φ(x)

, k(·, y)︸ ︷︷ ︸
Φ(y)

〉H

and is symmetric and positive definite. In fact, the converse is also
true (Moore-Aronszajn Theorem).
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RKHS

Kernels ⇔ Positive definite & symmetric functions ⇔ RKHS

I H = span{k(·, x) : x ∈ X} (linear span of kernel functions)

I k controls the properties of f ∈ H.

I If k satisfies (∗), then every f ∈ H satisfies (∗), where (∗) is

I boundedness

I continuity

I measurability

I integrability

I differentiability
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Kernel PCA

I Kernel PCA generalizes linear PCA.

I k(x , y) = 〈x , y〉2, x , y ∈ Rd : H is isometrically isomorphic to Rd .

f (x) = 〈wf , x〉2, ∀ f ∈ H
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Kernel PCA
I Using the reproducing property f (X ) = 〈f , k(·,X )︸ ︷︷ ︸

Φ(X )

〉H, we obtain

f ∗ = arg sup
‖f ‖H=1

〈f ,Σf 〉H.

I

Σ :=

∫
X
k(·, x)⊗H k(·, x) dP(x)− µP ⊗H µP

is the covariance operator (self-adjoint, positive and trace class) on
H and

µP :=

∫
X
k(·, x) dP(x)

is the mean element.

I Spectral theorem:

Σ =
∑
i∈I

λiφi ⊗H φi

where I is either countable (λi → 0 as i →∞) or finite.

I Similar to PCA, the solution is the eigenfunction corresponding to
the largest eigenvalue of Σ.
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Empirical Kernel PCA

In practice, P is unknown but have access to (Xi )
n
i=1

i.i.d.∼ P.

I

f̂ ∗ = arg sup
‖f ‖H=1

〈f , Σ̂f 〉H,

where

Σ̂ :=
1

n

n∑
i=1

k(·,Xi )⊗H k(·,Xi )− µn ⊗H µn

is the empirical covariance operator (symmetric, positive and trace
class) on H and

µn :=
1

n

n∑
i=1

k(·,Xi ).

I Spectral theorem:

Σ̂ =
n∑

i=1

λ̂i φ̂i ⊗H φ̂i .

I f̂ ∗ is the eigenfunction corresponding to the largest eigenvalue of Σ̂.
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Empirical Kernel PCA: Representer Theorem
I Since Σ̂ is an infinite dimensional operator, we have to solve an

infinite dimensional eigen system,

Σ̂φ̂i = λ̂i φ̂i .

I Consider

sup
‖f ‖H=1

〈f , Σ̂f 〉H = sup
‖f ‖H=1

1

n

n∑
i=1

〈f , k(·,Xi )〉2−

〈
f ,

1

n

n∑
i=1

k(·,Xi )

〉2

H

.

I Clearly f ∗ ∈ span{k(·,Xi ) : i = 1, . . . , n}, i.e.,

f ∗ =
n∑

i=1

αik(·,Xi ).

I sup
{
〈f , Σ̂f 〉H : ‖f ‖H = 1

}
= sup

{
α>KHnKα : α>Kα = 1

}
, i.e.,

KHnKα = λKα.

I Requires K to be invertible.
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Empirical Kernel PCA

I In classical PCA, Xi ∈ Rd , i = 1, . . . , n is represented as

(〈Xi − µ, ŵ1〉2, . . . , 〈Xi − µ, ŵ`〉2) ∈ R`

with ` ≤ d where (ŵi )
`
i=1 are the eigenvectors of Σ̂ corresponding to

the top-` eigenvalues.

I In kernel PCA, Xi ∈ X , i = 1, . . . , n is represented as(〈
k(·,Xi )− µn, φ̂1

〉
H
, . . . ,

〈
k(·,Xi )− µn, φ̂`

〉
H

)
∈ R`

with ` ≤ n where (φ̂i )
`
i=1 are the eigenfunctions of Σ̂ corresponding

to the top-` eigenvalues.
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Summary

I The direct formulation requires the knowledge of feature map Φ
(and of course H) and these could be infinite dimensional.

Σ̂φ̂i = λ̂i φ̂i .

I The alternate formulation is entirely determined by kernel
evaluations, Gram matrix. But poor scalability: O(n3).

φ̂i =
n∑

j=1

αi,jk(·,Xj ),

where αi satisfies
HnKαi = λiαi .



Approximation Schemes

I Incomplete Cholesky factorization (e.g., Fine and Scheinberg, 2001)

I Sketching (Yang et al., 2015)

I Sparse greedy approximation (Smola and Schölkopf, 2000)

I Nyström method (e.g., Williams and Seeger, 2001)

I Random Fourier features (e.g., Rahimi and Recht, 2008a), ...



Random Fourier Approximation

I X = Rd ; k be continuous and translation-invariant, i.e.,
k(x , y) = ψ(x − y).

I Bochner’s theorem: ψ is positive definite if and only if

k(x , y) =

∫
Rd

e
√
−1〈ω,x−y〉2 dΛ(ω),

where Λ is a finite non-negative Borel measure on Rd .

I k is symmetric and therefore Λ is a “symmetric” measure on Rd .

I Therefore

k(x , y) =

∫
Rd

cos(〈ω, x − y〉2) dΛ(ω).
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Random Feature Approximation

(Rahimi and Recht, 2008a): Draw (ωj )
m
j=1

i.i.d.∼ Λ.

km(x , y) =
1

m

m∑
j=1

cos (〈ωj , x − y〉2) = 〈Φm(x),Φm(y)〉R2m ,

≈ k(x , y) = 〈k(·, x), k(·, y)〉H︸ ︷︷ ︸
〈Φ(x),Φ(y)〉H

where

Φm(x) =
1√
m

(

ϕ1(x)︷ ︸︸ ︷
cos(〈ω1, x〉2), . . . , cos(〈ωm, x〉2), sin(〈ω1, x〉2), . . . , sin(〈ωm, x〉2)).

Idea: Apply PCA to Φm(x).
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Approximate Kernel PCA (RF-KPCA)

I Perform linear PCA on Φm(X ) where X ∼ P.

I Approximate empirical KPCA finds β ∈ Rm that solves

sup
‖β‖2=1

Var[〈β,Φm(X )〉2] = sup
‖β‖2=1

〈β,Σmβ〉2

where Σm := E[Φm(X )⊗2 Φm(X )]− E[Φm(X )]⊗2 E[Φm(X )].

I Same as doing kernel PCA in Hm where

Hm =

{
f =

m∑
i=1

βiϕi : β ∈ Rm

}

is an RKHS induced by the reproducing kernel km w.r.t.

〈f , g〉Hm
= 〈βf , βg 〉2 .
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Empirical RF-KPCA

The empirical counterpart is obtained as:

β̂∗m = arg sup
‖β‖2=1

〈
β, Σ̂mβ

〉
2

where

Σ̂m :=
1

n

n∑
i=1

Φm(Xi )⊗2 Φm(Xi )−

(
1

n

n∑
i=1

Φm(Xi )

)
⊗2

(
1

n

n∑
i=1

Φm(Xi )

)
.

I Eigen decomposition: Σ̂m =
∑m

i=1 λ̂i,mφ̂i,m ⊗2 φ̂i,m

I β̂∗m is obtained by solving an m ×m eigensystem: Complexity is
O(m3).

What happens statistically?
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How good is the approximation?

(S and Szabó, 2016):

sup
x,y∈S

|km(x , y)− k(x , y)| = Oa.s.

(√
log |S |

m

)

Optimal convergence rate

I Other results are known but they are non-optimal (Rahimi and Recht,

2008a; Sutherland and Schneider, 2015).



What happens statistically?

Kernel ridge regression: (Xi ,Yi )
n
i=1

iid∼ ρXY .

I R∗P = inf f∈L2(ρX ) E|f (X )− Y |2 = E|f ∗(X )− Y |2.

I Penalized risk minimization: O(n3)

fn = arg inf
f∈H

1

n

n∑
i=1

|Yi − f (Xi )|22 + λ‖f ‖2
H

I Penalized risk minimization (approximate): O(m2n)

fm,n = arg inf
f∈Hm

1

n

n∑
i=1

|Yi − f (Xi )|22 + λ‖f ‖2
Hm



What happens statistically?

RP(fm,n)︸ ︷︷ ︸
E|fm,n(X )−Y |2

−R∗

= (RP(fm,n)−RP(fn))︸ ︷︷ ︸
error due to approximation

+ (RP(fn)−R∗P)

I (Rahimi and Recht, 2008b): (m ∧ n)−
1
2

I (Rudi and Rosasco, 2016): If m ≥ nα where 1
2 ≤ α < 1 with α

depending on the properties of f ∗, then fm,n achieves the minimax
optimal rate as obtained in the case with no approximation.

I Similar results are derived for Nyström approximation (Bach 2013,

Alaoui and Mahoney, 2015, Rudi et al., 2015).

Computational gain with no statistical loss!!
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optimal rate as obtained in the case with no approximation.

I Similar results are derived for Nyström approximation (Bach 2013,

Alaoui and Mahoney, 2015, Rudi et al., 2015).

Computational gain with no statistical loss!!



What happens statistically?

RP(fm,n)︸ ︷︷ ︸
E|fm,n(X )−Y |2

−R∗

= (RP(fm,n)−RP(fn))︸ ︷︷ ︸
error due to approximation

+ (RP(fn)−R∗P)

I (Rahimi and Recht, 2008b): (m ∧ n)−
1
2

I (Rudi and Rosasco, 2016): If m ≥ nα where 1
2 ≤ α < 1 with α

depending on the properties of f ∗, then fm,n achieves the minimax
optimal rate as obtained in the case with no approximation.

I Similar results are derived for Nyström approximation (Bach 2013,

Alaoui and Mahoney, 2015, Rudi et al., 2015).

Computational gain with no statistical loss!!



What happens statistically?

RP(fm,n)︸ ︷︷ ︸
E|fm,n(X )−Y |2

−R∗

= (RP(fm,n)−RP(fn))︸ ︷︷ ︸
error due to approximation

+ (RP(fn)−R∗P)

I (Rahimi and Recht, 2008b): (m ∧ n)−
1
2

I (Rudi and Rosasco, 2016): If m ≥ nα where 1
2 ≤ α < 1 with α

depending on the properties of f ∗, then fm,n achieves the minimax
optimal rate as obtained in the case with no approximation.

I Similar results are derived for Nyström approximation (Bach 2013,

Alaoui and Mahoney, 2015, Rudi et al., 2015).

Computational gain with no statistical loss!!



What happens statistically?

Two notions for PCA:

I Reconstruction error

I Convergence of eigenspaces



Reconstruction Error

I Linear PCA

EX∼P

∥∥∥∥∥(X − µ)−
∑̀
i=1

〈(X − µ), φi 〉2φi

∥∥∥∥∥
2

2

I Kernel PCA

EX∼P

∥∥∥∥∥k̃(·,X )−
∑̀
i=1

〈k̃(·,X ), φi 〉Hφi

∥∥∥∥∥
2

H

where k̃(·, x) = k(·, x)−
∫
k(·, x) dP(x).

I However, the eigenfunctions of approximate empirical KPCA lie in
Hm, which is finite dimensional and not contained in H.
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Embedding to L2(P)

What we have?

I Population eigenfunctions (φi )i∈I of Σ: these form a subspace in H.

I Empirical eigenfunctions (φ̂i )
n
i=1 of Σ̂: these form a subspace in H.

I Eigenvectors after approximation, (φ̂i,m)m
i=1 of Σ̂m: these form a subspace in Rm

I We embed them in a common space before comparing. The common space is
L2(P).

I (Inclusion operator) I : H→ L2(P), f 7→ f −
∫
X f (x) dP(x)

I (Approximation operator) U : Rm → L2(P),

α 7→
m∑

i=1

αi

(
ϕi −

∫
X
ϕi (x) dP(x)

)
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Properties

I Σ = I∗I

I I and I∗ are HS and Σ is trace-class

I Σm = U∗U

I U and U∗ are HS and Σm is trace-class

I ‖Σ− Σ̂‖HS = OP

(
n−

1
2

)
I ‖Σm − Σ̂m‖HS = OP

(
n−

1
2

)
I ‖II∗ − UU∗‖HS = OΛ

(
m−

1
2

)
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Reconstruction Error(
Iφi√
λi

)∞
i=1

form an ONS for L2(P). Define k̃(·, x) = k(·, x)− µP and τ > 0.

I Population KPCA:

R` = E

∥∥∥∥∥Ik̃(·,X )−
∑̀
i=1

〈
Iφi√
λi
, Ik̃(·,X )

〉
L2(P)

Iφi√
λi

∥∥∥∥∥
2

L2(P)

=
∥∥∥Σ− Σ1/2Σ−1

` Σ3/2
∥∥∥2

HS
= ‖Σ− Σ`‖2

HS .

I Empirical KPCA:

Rn,` = E

∥∥∥∥∥∥∥Ik̃(·,X )−
∑̀
i=1

〈
Iφ̂i√
λ̂i

, Ik̃(·,X )

〉
L2(P)

Iφ̂i√
λ̂i

∥∥∥∥∥∥∥
2

L2(P)

=
∥∥∥Σ− Σ1/2Σ̂−1

` Σ3/2
∥∥∥2

HS

I Approximate Empirical KPCA:

Rm,n,` = E

∥∥∥∥∥∥∥Ik̃(·,X )−
∑̀
i=1

〈
Uφ̂i,m√
λ̂i,m

, Ik̃(·,X )

〉
L2(P)

Uφ̂i,m√
λ̂i,m

∥∥∥∥∥∥∥
2

L2(P)

=
∥∥∥(I − UΣ̂−1

m,`U
∗
)
II∗
∥∥∥2

HS
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Result

Clearly R` → 0 as `→∞. The goal is to study the convergence rates for R`, Rn,` and
Rm,n,` as `,m, n→∞.

Suppose λi � i−α, α > 1
2
, ` = n

θ
α and m = nγ where θ > 0 and 0 < γ < 1.

I R` . n−2θ(1− 1
2α )

I

Rn,` .

n−2θ(1− 1
2α ), 0 < θ ≤ α

2(3α−1)
(bias dominates)

n−( 1
2
−θ), α

2(3α−1)
≤ θ < 1

2
(variance dominates)

I

Rm,n,` .

n−2θ(1− 1
2α ), 0 < θ ≤ α

2(3α−1)

n−( 1
2
−θ), α

2(3α−1)
≤ θ < 1

2

for γ > 2θ.

No statistical loss
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Convergence of Projection Operators-I

Since
(

Iφi√
λi

)∞
i=1

form an ONS for L2(P), we consider

I Empirical KPCA:

Sn,` =

∥∥∥∥∥∥∥
∑̀
i=1

Iφi√
λi
⊗

Iφi√
λi
−
∑̀
i=1

Iφ̂i√
λ̂i

⊗
Iφ̂i√
λ̂i

∥∥∥∥∥∥∥
op

I Approximate Empirical KPCA:

Sm,n,` =

∥∥∥∥∥∥∥
∑̀
i=1

Iφi√
λi
⊗

Iφi√
λi
−
∑̀
i=1

Uφ̂m,i√
λ̂m,i

⊗
Uφ̂m,i√
λ̂m,i

∥∥∥∥∥∥∥
op

as `,m, n→∞.
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Convergence of Projection Operators-I

Unlike in reconstruction error, the convergence of projection operators
depends on the behavior of the eigen-gap, δi = 1

2 (λi − λi+1) , i ∈ N.

I Empirical KPCA:

Sn,` .
1

δ`
√

n
+

1

n1/4
√
λ`
,

assuming δ` & n−1/2 and λ` & n−1/2.

I Approximate Empirical KPCA:

Sm,n,` .
1

δ`
√

m
+

1

n1/4
√
λ`
,

assuming δ` & m−1/2 and λ` & m−1/2.
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Convergence of Projection Operators-I

Suppose λi � i−α, α > 1
2
, δi & i−β , β ≥ α, ` = n

θ
α and m = nγ where 0 < θ < 1

2
and 0 < γ < 1.

I

Sn,` .

n−( 1
4
− θ

2 ), 0 < θ < α
2(2β−α)

n
−
(

1
2
− θβ
α

)
, α

2(2β−α)
≤ θ < α

2β

I

Sm,n,` .

n−( 1
4
− θ

2 ), 0 < θ < α
2(2β−α)

, γ ≥ 1
2

+ θ
(

2β
α
− 1
)

n
−
(
γ
2
− θβ
α

)
, 0 < θ < α

2(2β−α)
, 2θβ
α

< γ < 1
2

+ θ
(

2β
α
− 1
)
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Convergence of Projection Operators-II

I Empirical KPCA:

Tn,` =

∥∥∥∥∥∑̀
i=1

Iφi ⊗L2(P) Iφi −
∑̀
i=1

Iφ̂i ⊗L2(P) Iφ̂i

∥∥∥∥∥
HS

=

∥∥∥∥∥Σ1/2

(∑̀
i=1

φi ⊗H φi −
∑̀
i=1

φ̂i ⊗H φ̂i

)
Σ1/2

∥∥∥∥∥
HS

.
`λ`

δ`
√

n

I Approximate Empirical KPCA:

Tm,n,` =

∥∥∥∥∥∑̀
i=1

Iφi ⊗L2(P) Iφi −
∑̀
i=1

Uφ̂i,m ⊗L2(P) Uφ̂i,m

∥∥∥∥∥
HS

.
`λ`

δ`
√

n
+

1
√

m

I Convergence rates can be derived under the assumption

λi � i−α, α > 1
2
, δi & i−β , β ≥ α, ` = n

θ
α and m = nγ where 0 < θ < 1

2
and

0 < γ < 1.
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∑̀
i=1

Iφ̂i ⊗L2(P) Iφ̂i

∥∥∥∥∥
HS

=

∥∥∥∥∥Σ1/2

(∑̀
i=1

φi ⊗H φi −
∑̀
i=1

φ̂i ⊗H φ̂i

)
Σ1/2

∥∥∥∥∥
HS

.
`λ`

δ`
√

n

I Approximate Empirical KPCA:

Tm,n,` =

∥∥∥∥∥∑̀
i=1

Iφi ⊗L2(P) Iφi −
∑̀
i=1

Uφ̂i,m ⊗L2(P) Uφ̂i,m

∥∥∥∥∥
HS

.
`λ`

δ`
√

n
+

1
√

m

I Convergence rates can be derived under the assumption

λi � i−α, α > 1
2
, δi & i−β , β ≥ α, ` = n

θ
α and m = nγ where 0 < θ < 1

2
and

0 < γ < 1.



Summary

I Random feature approximation to kernel PCA improves its
computational complexity.

I Statistical trade-off:

I Reconstruction error

I Convergence of eigenspaces

I Open questions:

I Lower bounds

I Extension to kernel canonical correlation analysis

I Nyström approximation



Thank You
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Optimal rates for random Fourier features.
In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R., editors, Advances in Neural Information Processing Systems
28, pages 1144–1152. Curran Associates, Inc.

Sutherland, D. and Schneider, J. (2015).
On the error of random fourier features.
In Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, pages 862–871.



References II

Williams, C. and Seeger, M. (2001).
Using the Nyström method to speed up kernel machines.
In T. K. Leen, T. G. Diettrich, V. T., editor, Advances in Neural Information Processing Systems 13, pages 682–688, Cambridge, MA.
MIT Press.

Yang, Y., Pilanci, M., and Wainwright, M. J. (2015).
Randomized sketches for kernels: Fast and optimal non-parametric regression.
Technical report.
https://arxiv.org/pdf/1501.06195.pdf.

https://arxiv.org/pdf/1501.06195.pdf

