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Principal Component Analysis (PCA) (pearson, 1001)

» Suppose X ~ IP be a random variable in RY with mean ;. and
covariance matrix X.

» Find a direction w € {v : ||v||> = 1} such that
Var[{w, X)2] = (w, Zw),

is maximized.
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Principal Component Analysis (PCA) (pearson, 1001)

» Suppose X ~ IP be a random variable in RY with mean ;. and
covariance matrix .

» Find a direction w € {v : ||v||> = 1} such that
Var[(w, X)2] = (w, Zw),
is maximized.
» Find a direction w € {v : ||v|2 = 1} such that
E[[(X — p) = {w, (X — p))2wl]3
is minimized.

» The formulations are equivalent and the solution is the eigenvector
of the covariance matrix ¥ corresponding to the largest eigenvalue.

» Can be generalized to multiple directions (find a subspace...).

» Applications: dimensionality reduction.



Kernel PCA

» Nonlinear generalization of PCA (Schélkopf et al., 1998).
> X — ®(X) through the feature map ¢ and apply PCA.

» The choice of ® determines the degree of information we capture
about X.

» Suppose ®(X) = (1, X, X2,X3,...), then the covariance of ®(X)
captures the higher order moments of X.

> & is not explicitly specified but implicitly specified through a positive
definite kernel function, k(x, y) = (®(x), ®(y)).



Kernel PCA: Functional Version

» Find f € {g € 3 : ||g||l3c = 1} such that Var[f(X)] is maximized,
ie.,
f*=arg sup Var[f(X)]
[If]l9c=1
where H is a reproducing kernel Hilbert space (evaluational functionals
f ~+ f(x) are bounded for all x € X') of real-valued functions (Aronszajn,
1950).
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Kernel PCA: Functional Version

» Find f € {g € 3 : ||g||l3c = 1} such that Var[f(X)] is maximized,
i.e.,
f*=arg sup Var[f(X)]
[If]l9c=1
where H is a reproducing kernel Hilbert space (evaluational functionals
f ~+ f(x) are bounded for all x € X') of real-valued functions (Aronszajn,
1950).

» Junique k : X x X — R such that k(-,x) € 3 for all x € H and
f(x) = (k(-,x),f)gc forall f e H, x € X.

> k is called the reproducing kernel of H as

k(X7 _)/) = <k('7X)7 k('v)/)>9f
d(x)  P(y)

and is symmetric and positive definite. In fact, the converse is also
true (Moore-Aronszajn Theorem).
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Positive definite & symmetric functions
> H = span{k(-,x)

<  RKHS
x € X} (linear span of kernel functions)
» k controls the properties of f € JH.




RKHS

Kernels <« Positive definite & symmetric functions <  RKHS

> H =span{k(-,x) : x € X} (linear span of kernel functions)
» k controls the properties of f € H.

> If k satisfies (x), then every f € X satisfies (x), where (x) is

> boundedness
> continuity

> measurability
> integrability

> differentiability



Kernel PCA

» Kernel PCA generalizes linear PCA.



Kernel PCA

» Kernel PCA generalizes linear PCA.
> k(x,y) = (x,y)2, x,y € RY: K is isometrically isomorphic to RY.

f(x) = {wr,x)2, VFeH
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Kernel PCA
» Using the reproducing property f(X) = (f, k(-, X)), we obtain

——
*(X)
f*=arg sup (f,Xf)g.
I fllsc=1
S
Y = / k(-,x) @g¢ k(-, x) dP(x) — up ®9¢ p1p
X

is the covariance operator (self-adjoint, positive and trace class) on
H and

1p ::/ k(-,x) dP(x)
X
is the mean element.

» Spectral theorem:
Y= Z Aidi @3¢ @i
icl
where [ is either countable (A; — 0 as i — oc0) or finite.

» Similar to PCA, the solution is the eigenfunction corresponding to
the largest eigenvalue of ¥.



Empirical Kernel PCA
ii.d.

In practice, P is unknown but have access to (X;)7_; "~ P.



Empirical Kernel PCA

In practice, P is unknown but have access to (X;)7_; iid. P.
>
Fr=arg sup (F.5F),
1]l 9c=1
where

. 1<
Y= k(- Xi k(-, Xi) = pn n
,,Z (7 )®TH ( ) Hn @g¢ b

i=1
is the empirical covariance operator (symmetric, positive and trace
class) on H and

1 n
Hn = n Z; k(-5 X5).-



Empirical Kernel PCA

In practice, P is unknown but have access to (X;)7_, E)
>
f*=arg sup (f,Xf)g,
lIFll3c=1
where

I
Yi==>) k(X k(s Xi) — pin n
nz (+, Xi) @3¢ k(- Xi) = pin @3¢ o

i=1
is the empirical covariance operator (symmetric, positive and trace
class) on H and

1 n
Hn = n Z; k(-5 X5).-
» Spectral theorem:
= Z Xidi @3¢ b
i=1

> 7*is the eigenfunction corresponding to the largest eigenvalue of 3.



Empirical Kernel PCA: Representer Theorem

» Since X is an infinite dimensional operator, we have to solve an
infinite dimensional eigen system,

26 = Xidr.



Empirical Kernel PCA: Representer Theorem

» Consider
1 o 1@ ?
sup (f,5f)sc= sup = <f,k(~,x,-)>2—<f, k(-,x,-)>
[If]l9c=1 Ifllac=1 1 ,z:; n ,z:; 5

> Clearly 7* € span{k(-,X;):i=1,...,n}, ie,

f*= En:()é,'k(n, X,)
i=1



Empirical Kernel PCA: Representer Theorem

» Consider
1 o 1@ ?
sup (f,5f)sc= sup = <f,k(~,x,-)>2—<f, k(-,x,-)>
[If]l9c=1 Ifllac=1 1 ,z:; n ; 5

v

Clearly 7* € span{k(-,X;):i=1,...,n}, ie,

f*= zn: (,Y,'k(n, X,)
i=1

v

sup{(f,ff);c fllae = 1} = sup{aTKH,,Ka ol Ko = 1}, ie.,

KH,Ka = AKa.

v

Requires K to be invertible.



Empirical Kernel PCA

> In classical PCA, X; e R, i =1,...,nis represented as
(X =T, W), ..., (Xi =TI, We)2) € R

with £ < d where (¥;)%_, are the eigenvectors of 3 corresponding to
the top-£ eigenvalues.



Empirical Kernel PCA

> In classical PCA, X; e R, i =1,...,nis represented as
(X =T, W), ..., (Xi =TI, We)2) € R

with £ < d where (¥;)%_, are the eigenvectors of 3 corresponding to
the top-£ eigenvalues.

> In kernel PCA, X; € X', i=1,...,nis represented as
LX) — 3 LX) — 3 ¢
<<k( , Xi) /L,,,q51>g{,...7<k( , Xi) /1,,,7cf)g>}c> eR

with ¢ < n where (gZA>,-)f:1 are the eigenfunctions of N corresponding
to the top-£ eigenvalues.



Summary

» The direct formulation requires the knowledge of feature map
(and of course H) and these could be infinite dimensional.

26 = Xid.

» The alternate formulation is entirely determined by kernel
evaluations, Gram matrix. But poor scalability: O(n?).

6= aijk(-. X)),
j=1

where «; satisfies
H,,Ka,- = )\,'O/_,'.



Approximation Schemes

v

Incomplete Cholesky factorization (e.g., Fine and Scheinberg, 2001)

v

Sketching (Yang et al., 2015)

v

Sparse greedy approximation (Smola and Schélkopf, 2000)

v

Nystrom method (e.g., Williams and Seeger, 2001)

v

Random Fourier features (e.g., Rahimi and Recht, 2008a), ...



Random Fourier Approximation

» X =R? k be continuous and translation-invariant, i.e.,
k(x,y) =(x —y).

» Bochner's theorem: %) is positive definite if and only if

k(x,y) = eV Hwx=y) dA\(w),

Rd

where A is a finite non-negative Borel measure on RY.

» k is symmetric and therefore A is a “symmetric’ measure on R?.



Random Fourier Approximation

» X =R? k be continuous and translation-invariant, i.e.,
k(x,y) =(x —y).

» Bochner's theorem: %) is positive definite if and only if

k(x,y) = eV Hwx=y) dA\(w),
Rd
where A is a finite non-negative Borel measure on RY.

» k is symmetric and therefore A is a “symmetric’ measure on R?.

» Therefore

k(x,y) = /Rd cos({w, x — y)2) d\(w).



Random Feature Approximation

id.
(Rahimi and Recht, 2008a): Draw (wj)F:l A

bno,9) = > €08 (wjx = Y)2) = &), &1 o,
j=1
~ k(X,y) = <k("X)7 k(")/»%
—_———
<¢(X)7¢(Y)>g(
where
p1(x)
1 /_/%
010) = (@Ol 08w x)2) (01,02 Sin{ i 12))



Random Feature Approximation

id.
(Rahimi and Recht, 2008a): Draw (wj)j’":l A

1 m
km(X:.y) - E ZCOS(<MJ,X - )/>2) - <CD,,7(X), q)m(y)>R2’”7
j=1
~ k(X’y) = <k('?X)7 k(ay»f}f
—_———
(P(x),®(y)) ¢
where
e1(x)

1 e N

b,(x) = ﬁ(cos«wl, X)2), -+ 5 €0S({wm, X)2), sin({w1, X)2), . . ., sin({wWm, x)2))-

Idea: Apply PCA to ®,,(x).



Approximate Kernel PCA (RF-KPCA)

» Perform linear PCA on &,,(X) where X ~ P.

» Approximate empirical KPCA finds § € R™ that solves

sup Var[(8,®m(X)),] = sup (5, Zn0),
IB8]l2=1 18]l2=1

where ¥, := E[®,(X) @2 ®,(X)] — E[®,(X)] @2 E[®,(X)].



Approximate Kernel PCA (RF-KPCA)

» Perform linear PCA on &,,(X) where X ~ P.

» Approximate empirical KPCA finds § € R™ that solves

sup Var[(8, ®p(X)),] = sup (5,2m0),

l18]l2=1 lI8]l2=1
where ¥, := E[®,,(X) @2 ® 1 (X)] — E[® 1 (X)] ®2 E[®,(X)].
» Same as doing kernel PCA in H,, where

Hm{fiﬂi%' : BGR"’}

is an RKHS induced by the reproducing kernel k,, w.r.t.

<f’g>f}{m = <Bf7 Bg>2 :



Empirical RF-KPCA

The empirical counterpart is obtained as:

B = arg sup <6, fm5>
18ll2=1 2
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The empirical counterpart is obtained as:
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% "o m(X) @2 Om( ( ZCD ) <r17i¢,,,(x,-)>.

» Eigen decomposition: 3, = > 3\;,,1,(2);,,,, ®2 (Zgi,m

> 3;7 is obtained by solving an m x m eigensystem: Complexity is
o(md).



Empirical RF-KPCA

The empirical counterpart is obtained as:

B = arg sup <6, fm5>
18ll2=1 2

% "o m(X) @2 Om( ( Zd) ) <r17i¢,,,(x,-)>.

» Eigen decomposition: 3, = > 3\;,,1,(2);,,,, ®2 (Zgi,m

> 3; is obtained by solving an m x m eigensystem: Complexity is
o(md).

What happens statistically?



How good is the approximation?

(S and Szabd, 2016):

log |.
sup |km(x,y) — k(x,y)| = Oass. ( g—')

x,y€& m

Optimal convergence rate

» Other results are known but they are non-optimal (Rahimi and Recht,
2008a; Sutherland and Schneider, 2015).



What happens statistically?

Kernel ridge regression: (X;, Y;)7_, i PXY -

> Rp = infreiz(p,) EIfF(X) — Y2 =E|f*(X) - Y%

» Penalized risk minimization: O(n%)
f,=arg |nf —Z|Y X3+ A|fll5c
» Penalized risk minimization (approximate): O(m?n)

1L
fmn = arg_inf =3 |Yi = OB+ B,
=



What happens statistically?

Re(fmn) —R*
E[fn,n(X)=Y?
= (Rep(fm,n) — Re(fn)) + (Re(f,) — Rp)

error due to approximation
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Re(fmn) —R*
E[fn,n(X)=Y?
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error due to approximation

1
> (Rahimi and Recht, 2008b): (m A n)~2



What happens statistically?

Re(fmn) —R
——
E|fm,n(X)—=Y?

= (Rep(fm,n) — Re(fn)) + (Re(f,) — Rp)

error due to approximation

1
> (Rahimi and Recht, 2008b): (m A n)~2

> (Rudi and Rosasco, 2016): If m > n® where + < o < 1 with o
depending on the properties of f*, then f,, , achieves the minimax
optimal rate as obtained in the case with no approximation.

Computational gain with no statistical loss!!



What happens statistically?

Re(fmn) —R

E|fn.n(X)— Y2
= (Re(fan) — Re(£))+ (Re(fy) — R3)

error due to approximation

1
> (Rahimi and Recht, 2008b): (m A n)~2

> (Rudi and Rosasco, 2016): If m > n® where + < o < 1 with o
depending on the properties of f*, then f,, , achieves the minimax
optimal rate as obtained in the case with no approximation.

» Similar results are derived for Nystrom approximation (Bach 2013,
Alaoui and Mahoney, 2015, Rudi et al., 2015).

Computational gain with no statistical loss!!



What happens statistically?

Two notions for PCA:
» Reconstruction error

» Convergence of eigenspaces



Reconstruction Error

» Linear PCA

Ex~p

(X —p) —

M-

2



Reconstruction Error

» Linear PCA

» Kernel PCA

Ex~p ;

where l~((~,x) = k(-,x) — [ k(-,x) dP(x).



Reconstruction Error

» Linear PCA
y 2
Ex~p (X = 1) = Y (X = 1), di)ashi
i=1 >
» Kernel PCA
¢ 2
Exp k('v X) - Z<l;(7 X)’ ¢i>9f¢i
i=1 I

where l~((~,x) = k(-,x) — [ k(-,x) dP(x).

» However, the eigenfunctions of approximate empirical KPCA lie in
H,,, which is finite dimensional and not contained in X.



Embedding to L*(IP)

What we have?

» Population eigenfunctions (¢;);c; of X: these form a subspace in .

» Empirical eigenfunctions ((A),')L of 3: these form a subspace in J{.

1

v

Eigenvectors after approximation, (qAS,-)m)}":l of ¥ these form a subspace in R™

v

We embed them in a common space before comparing. The common space is
L2(P).



Embedding to L*(IP)

What we have?

> (Inclusion operator) J : H{ — L2( ) ff— IX dIED( )

> (Approximation operator) 4 : R™ — Lz(P),

a»—)Za, (w, /(p, (x) dP(x ))



Properties

> X =TT

» J and J* are HS and X is trace-class
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Properties

> X =TT

» J and J* are HS and X is trace-class

v

Y= UrU

v

Y and U* are HS and X, is trace-class

IZ s = Or (n~})

v

v

IZm = mllns = Oz (n})



Properties

> X =TT

» J and J* are HS and X is trace-class

v

Y= UrU

v

Y and U* are HS and X, is trace-class

> [T~ $lus = 0 (n?)
> %0~ Enllus = O (n?)
> [|33% — U || s = On (m*%>



Reconstruction Error

( I > form an ONS for L2(P). Define k(-,x) = k(-,x) — up and 7 > 0
VA g

» Population KPCA:

R =E

. 360 i
k(- X) — ,ok(-, X
(%) ;<\/>\i ( )>L2(]P) VA

L2(P)
B 2
= HZ -7y 123/2“,45 = [|X — Zell3s -



Reconstruction Error

( I > form an ONS for L2(P). Define k(-,x) = k(-,x) — up and 7 > 0.
VA g

» Population KPCA:

¢ 2

7 Jgi .z J¢;

R =E 3k(~,X)—Z< ﬁ,ﬁk(-,X)> =

i=1 )\i L2(P) )\" L2(P)
o 2
- Hz . e 123/2HHS ). A
» Empirical KPCA:

2

e ~ ~
Rp.e = E||3k(-, X) —Z< 3i ,3/}(.,X)> 3

i=1

_ Hz 51 Qi/ 15-3/2




Reconstruction Error
(\j/%>i:1 form an ONS for L2(P). Define k(-,x) = k(-,x) — up and 7 > 0.

» Population KPCA:

2
R =E

. 360 i
k(- X) — ,ok(-, X
(%) ;<\/>\i ( )>L2(]P) VA

L2(P)
2
= [z = im - s
» Empirical KPCA:

i=1

2
¢ N ~
Rn,@ =E 3/}(,X)—Z< j¢l 73;(7X)> j¢l

- 5112
= Hz yl/2g tys3/2
HS

» Approximate Empirical KPCA:

2
£ 2 A
R =E || k(- X) = > < Uim 7j;}(.’x)> Uoi,m




Result

Clearly R, — 0 as £ — co. The goal is to study the convergence rates for Ry, R, ¢ and
Rm,ne as £,m,n — oo.
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Result

Clearly R, — 0 as £ — co. The goal is to study the convergence rates for Ry, R, ¢ and
Rm,ne as £,m,n — oo.

0
Suppose \; < iT% a > %,K:nK and m = n” where § >0and 0 <y < 1.

| 4 R[ 5 n720(17i)

>
n20(-35), 0<o< S (bias dominates)
Rn./ :; 1_p (3a=1)
n—(3-0) 2(31(\‘71) <0< % (variance dominates)
[
1
R n~(-25), 0<o< 2Ba—1)
mynt S 1_9 a 1
(2-9), Ga1 =0 <3
for v > 26.

No statistical loss



Convergence of Projection Operators-I

00
i=1

Since (%) form an ONS for L?(PP), we consider

» Empirical KPCA:

Sn,Z =

L~ ~ L ~2
N I
SV TS




Convergence of Projection Operators-I

00
i=1

Since (\3/—‘/75\»’) form an ONS for L?(PP), we consider

» Empirical KPCA:




Convergence of Projection Operators-I

Unlike in reconstruction error, the convergence of projection operators
depends on the behavior of the eigen-gap, d; = % (AN — Aip1), 1 €N

» Empirical KPCA:
1
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Convergence of Projection Operators-I

Unlike in reconstruction error, the convergence of projection operators
depends on the behavior of the eigen-gap, d; = % (AN — Aip1), 1 €N

» Empirical KPCA:
1

1
P S
’ Ser/n n1/4x//\g
assuming 0; > n=1/2 and A\, > n—1/2,

Sn

» Approximate Empirical KPCA:
S ! + !
S Sem AR

assuming 0; > m~1/2 and Ay > m~1/2,

S



Convergence of Projection Operators-I

)
Suppose/\,-xi_“,a>%,6[2i‘5,52a,8:n5 and m:n“/whereO<9<%
and 0 < v < 1.

2]
?)~ O<0<2<
63

n*(/l; &

5 _ 28 —a)
nt ~ ,,7(% T) o <0 P o
» o 2(2B—a) — 2B



Convergence of Projection Operators-I

)
Suppose/\,-xi_“,a>%,6[2i‘5,52a,8:n5 and m:n“/whereO<9<%
and 0 < v < 1.

Slhé'

174N

“(i-%)., 0<f0< o
{” ) <0< 3@5—

1 03

2

« (e}
228—a) <0< 28

_(1_9 1 28
Sni < nm(678), 0<h< g vz e (Y1)
m,nl S ( 2

-1
n o) <<t ey <t (21
) 22—a)’ « v 2 a



Convergence of Projection Operators-I|

» Empirical KPCA:

4 14
Toe= Z Jpi ®p2(p) Tbi — Z Joi @p2py IPi
i=1 i=1 HS
¢ ¢
=||=? <Z i Qg¢ Pi — Z bi @9¢ 5;) ¥1/2
i=1 i=1 HS
By

™ dev/n



Convergence of Projection Operators-I|

» Empirical KPCA:

¢ ¢
The= Zj@ ®p2(p) IPi — Z 36i B12(p) i
] i=1 HS
¢ ¢
21/2 <Z b Q¢ bi — z (;),' Q5 (;,‘) 21/2
i=1 i=1 HS
< 12V
~ (52\/E

» Approximate Empirical KPCA:

A A
Z J¢; ®@2(p) Jp; — Zqui,m X 12(p) U»<ZA5:',m
i=1 i=1
< Z)\Z + i
v/ /m

Tm,n,Z =

HS




Convergence of Projection Operators-I|

» Empirical KPCA:

4
Tn,l = Zj¢, ®L2(P’) 3¢, Z ’() /L I(),
=1 HS
L /¢
2 (3o 3 on ) oy
=1 i=1 HS
< 12V,
~ (52\/E

» Approximate Empirical KPCA:

14
Tm,n,[ - Z 3¢1 ®L2 j¢l Zu(;i,m ®L2(]p>) u(lgi,m
i=1 i=1 HS
< I2Y) 1
5zxf NG

» Convergence rates can be derived under the assumption

- . o ,
A=< Q,a>%70121*57[32a,€:nn and m=n" where0<9<%and
0<y<Ll.



Summary

» Random feature approximation to kernel PCA improves its
computational complexity.

» Statistical trade-off:

» Reconstruction error

» Convergence of eigenspaces

» Open questions:
> Lower bounds
> Extension to kernel canonical correlation analysis

> Nystrom approximation



Thank You
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