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WHICH PROBLEMS CAN WE SOLVE WITH COMPUTERS?

Worst-case data Probabilistic data model

Information
Theory,
Statistics

Limited Computational
computational Complexity
resources Theory

e Non-convex, NP-hard problems are solved every day
(neural networks, optimization, scheduling, ...).

e Data is far from worst case
(biology, physics, statistics, machine learning).
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GENERALIZED LINEAR REGRESSION

one-layer fully-connected feedforward neural network

data matrix: F' € :RnXp

unknown fitting parameters: € [R? component-wise function

dependent variabless Yy € R" y :/ gp (F :L,)

Goal: Minimize prediction/generalization error.

Example: gO(Z) — Sign(z)




BASIC QUESTIONS:

» Given (v,F) and @

» High-dimensional limit: a = n/p = ©(1) while n,p — o0

What is the minimal achievable prediction error?

What is the minimal efficiently achievable prediction error?
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Answer: Depends on (y,F) ...




PROBABILISTIC MODEL

Gardner, Derrida’89; Meézard’89; many more papers in statistical physics.

» Teacher:
e F iid components, F; ~ ./\/'(()7 1/p) F c R"XP
e x* 11d components, v B
o Generates: =i {Fy) noise: &

» Student:
o Aims to estimate x from (y,F). Knows Px, and .
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WHY TEACHER/STUDENT SETTING?

e Tractable theory (including constants), complementary to the
worst-case theories.

o Sometimes realistic (e.g. compressed sensing, super-position error
correcting codes, code multiple-division access problem).

o Interesting: phase transitions and algorithmic gaps.

o Challenging: Formula for optimal prediction error
conjectured by Gardner, Derrida’89; Gyorgyi'go. Partial results in

Talagrand’o3: “Spin Glasses: A Challenge for Mathematicians”. Proof in
Barbier, Krzakala, Macris, Miolane, LZ, arXiv:1708.03395, COLT’18.




BAYES-OPTIMAL ESTIMATION

for the teacher-student setting

($|y7 s HPout y,u‘Zszz H ( )

Ly

» x* is generated from Px, y is generated from

F ot (y‘z) — £P§ [5(:9 = gOg(Z)]

> x* 1s then "forgotten" and has to be recovered from F and y.

o N

|» Bayes optimal estimator ;= posterior mean of x;.

ﬁ Optimal because it minimises 1P

MSE = =) (z} — &)°
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BAYES-OPTIMAL GENERALIZATION

for the teacher-student setting

($|y7 o Hpout y,u‘ZF,uzxz H

Ly

» x* is generated from Px, y is generated from

Pout (y‘Z) = ﬂpg 5(y = SOS(Z)]
> New row, Fnew, 1s given; predict the label that x* would generate,
without knowing x*.

¥ 2

(> Bayes optimal prediction:




COMPUTATIONAL CAVEAT

> High-dimensional limit: a = n/p = ®(1) while p,n — o0
> Computing posterior averages:
e Easy for Gaussian Px and Pout (ridge regression).

o NP-hard for general Px and Pout. /, ,
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PERCEPTRON

highlight of the results




TEACHER-STUDENT PERCEPTRON

J. Phys. A: Math. Gen. 22 (1989) 1983-1994. Printed in the UK COOI‘dinateS F/J,Z S N(O7 ]'/p)

- introduce the model - of points:

Three unfinished works on the optimal storage capacity hyper—plane T * AU PX
of networks parameterS' 1
E Gardner and B Derrida %
The ] f d Studies, The Heb Uni fJ lem, J I Israel F *
e Institute for Advanced Studies, The Hebrew University of Jerusalem, Jerusatem, Israe e
and Service de Physique Théorique de Saclay*, F-91191 Gif-sur-Yvette Cedex, France ]_ab els . ‘ y S lgn '//E
Received 13 December 1988

Abstract. The optimal storage properties of three different neural network models are
studied. For two of these models the architecture of the network is a perceptron with =J
interactions, whereas for the third model the output can be an arbitrary function of the
inputs. Analytic bounds and numerical estimates of the optimal capacities and of the
minimal fraction of errors are obtained for the first two models. The third model can be
solved exactly and the exact solution is compared to the bounds and to the results of
numerical simulations used for the two other models.

Gyorgyi’90: conjectures formula for
optimal generalisation error using
replica method from disordered systems.

n :
e = E = @(1) n,p — oo p=2, =22, (1=Il/p=11
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GAUSS-BERNOULLI PERCEPTRON
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BINARY PERCEPTRON
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OUTLINE OF THE REST

e Formula for the optimal error (+ proof idea).

e Approximate message passing (AMP) algorithms reaching
optimality (out of a hard phase).

e Hard phase conjecture: AMP gets lowest error from all
polynomial algorithms.




REMINDER OF THE SETTING

P(z|y, F) = 70 F)

» Frandomiid, F,; ~ N(0,1/p)
» x* is generated from Px, y is generated from Pout(y|Fx*)

> High-dimensional limit: a = n/p = ®(1) while p, n — o0




MAIN THEOREMS

Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395, COLT 18

1L
Def. “quenched” free entropy: f = lim —-E, rlog Z(y, F')

P 70C p

Theorem 1 (replica free entropy, informally):
f =supinf frs(m,m)
®PX( 7 ) +Q®Pout(m;p)
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(mip) = By [ dy Pau(ylvimo + Vo= 2) By [Pou (ylvimo + Vo= mw)] |
o= n (562)




MAIN THEOREMS

Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395, COLT 18

1L
Def. “quenched” free entropy: f = lim —-E, rlog Z(y, F')

P 70C p

Theorem 1 (replica free entropy, informally):

f =supinf frs(m,m)

A

mm
2

= ®p, () + a®p, . (m;p)

Theorem 2 (optimal estimation error, informally):

MMSE = p —m”~

where m* is the extremizer of frg




MAIN THEOREMS

Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395, COLT 18

1
Def. "quenched’ free entropy:f = lm - E, rlogc Z(y, )

P 70C p

Theorem 1 (replica free entropy, informally):

f =supinf frs(m,m)

m T

): QPX(m)_I_Oé@Pout(m;p)

A

™mmn

)
Theorem 3 (optimal generalisation error, informally):

Egen = E [fe(vP0)*]-E E [fe(vm* vtvp—m w)]

v v w,§

where m* 1s the extremizer of frs.




SELECTED RELATED WORK 1

Replica method of statistical physics leads to the same free entropy and expression
for optimal error.

Gardner, Derrida’89, Gyorgyi’9o, Sompolinsky, Tishby, Seung’9o free entropy
conjectured for the teacher-student setting of binary perceptron. Followed by large
activity of statistical physicist on neural networks, reviewed Engel, Broeck’o1.

In information and communication theory the replica formula known as the
Tanaka’02 formula for the CDMA problem.

In compressed sensing Guo, Baron, Shamai’09, Wu, Verdu’11, Krzakala, Mezard,
Sausset, Sun, LZ’12.

Previous rigorous proof only for a special case of the linear output with Gaussian
noise: Barbier, Dia, Macris, Krzakala’16, and independently Reeves, Pfister’16.




PROOF IDEA

Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395, COLT 18

NOtice fRS (m7 m) -~ ¢PX (m) _I_ O{¢Pout (m; IO)

®p, () is the free entropy of a scalar denoising problem

CE‘*NPX

®p .(m;p) isthe free entropy of a scalar denoising problem

ngout(g‘\/a’U‘F\/,O—mZ*) vz~ N0 1)

= £PX (332)




PROOF IDEA

Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395, COLT 18

Guerra-Toninelli-like interpolation between the original
posterior and N + M independent scalar denoising problems.

Interpolating Hamiltonian (=log-likelihood):

ZlnPout (i = Z e e

— s \//mt’dt’vu \// (o e dit




PROOF IDEA

Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395, COLT 18

Interpolating free entropy:

Ik

nE=0)=7f =

1 +mm - .
T+ Dy i) + 0/, ([ mit)dtip
0)

Main aim: Choose interpolation path m(t) so that fn(t)
effectively does not depend on t!

Key property for this to work (Nishimori): Under expectations
ground truth x* is exchangeable for a sample from P(x|y,F).

ECB* 7yEP(x|y) [g(y7 37(1)7 :E*)] — EyEP(az|y) [g(y, ZIZ‘(l), QE(Q))]




IS THE OPTIMAL ERROR
REACHABLE WITH EFFICIENT

ALGORITHMS?




APPROXIMATE MESSAGE PASSING

1 2 2
P(x‘va): Z( F) HPout(y/AZFMZCEz)
Y5 n=1 i—1 '

Signal variables Measurements

Belief propagation (BP):

U,
ST
XEEL 1

Prior Px(z:)

/H [dzjm;—pu(25)] Pout (Yul Z Flux)
JF1 l

Zp—si

The p-dimensional integral in BP is algorithmically
intractable ... but when p — o0 we can simplify
into approximate message passing.




Algorithm 2 Generalized Approximate Message Passing (G-AMP)

Input: y
Initialize: a
repeat

AMP Update of w,, V,

0.0 O
Vo, gout,p,a t=1

AMP Upda,te of 2,;, Ri, Jout,u
gout,y. < Jout (wuﬂ Yus Vt)

Onsager

I [— > FiOugout Wy, Yu, terms

AMP Update of the estimated marginals a;, v;
a’ﬁ — fa(E:,RZ)
tt+1 Simple to implement, only

til C i iplicati
until Convergence on a,v matrix multiplications, O(N2)
output: a,v.

fdxpr(m)e_(m;zR)? o) J dzPout(y]2) (z —w) €™ —
fo(2. ) - e BER=SRLER). g (y,V) =

— 2
J dz Px(z)e™ == VfdzPout(y|z)e e




Algorithm 2 Generalized Approximate Message Passing (G-AMP)

Input: y
Initialize: ao,vo, ggut,#, t=1
repeat

AMP Update of w,, V,

AMP Update of 2,;, R,;, Jout,u

Zf — [— Z inawgout (w;tu Yus

In

AMP Update of the estimated marginals a;, v;
a';; — fa(Z:,R:)

Onsager
terms

tt+1 Simple to implement, only

until Convergence on a,v
output: a,v.

matrix multiplications, O(np)

GAMP for prediction:

1

dz dy yFPout(y|2)e” 2vF

t—1)2
(Z_Zz' Fnew,iai )




STATE EVOLUTION

Define: Q. then MSE({)=p -m

mt in the AMP algorithm (n,p — 0o, = ©(1) ) evolves as:

mt_l_l — Qamq)px (mt)
—2&8 ®Pout( t?IO)

Recall the RS free entropy

frs(m,m) = ®p, (M) +a®p, (M




BOTTOM LINE

e AMP-MSE given by the local maximum of the free entropy
reached starting from small m/large MSE.

e MMSE is given by the global maximum of the free entropy.

>

MMSE = p — argmax frs(m)

free entropy

MSEamp = p — mamp

argmax frs(m)




SELECTED RELATED WORK 11

Idea from Thouless-Anderson-Palmer’76 but problem with time-indices and
hence with convergence. Resolved by Bolthausen in ~2008.

AMP for general prior written by Donoho, Maleki, Montanari in 2009. G-AMP
derived by Rangan’10, but also appeared earlier in Kabashima’o3 (as a way to
unify perceptron and CDMA).

State evolution proven in Bolthausen’08 for another model, regression by Bayati,
Montanari’11 for Gaussian matrices and output, and by Bayati, Lelarge,
Montanari’12 for general iid matrices, and Gaussian output. General output and
Gaussian matrices in Javanmard, Montanari’'13.




RESULTS




PHASE TRANSITIONS

free entropy

Compressed sensing:

Px Gauss-Bernoulli(p)

Noiseless linear output.
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Fraction of non-zeros in Xx.
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MMSE Non-zeros are Gaussians(0,1)




HARD PHASE IN NATURE

Diamond
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Metastable diamond = high error. Equilibrium graphite = low error.
Algorithms are stuck at high error for exponential time.
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PHASE DIAGRAM OF (NOISELESS)
SPARSE LINEAR ESTIMATION

Px Gauss-Bernoulli(p)

AMP = approximate message
passing

Hard for all known polynomial
algorithms: ajr < a < GpAlg
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HARD PHASE EVERYWHERE!

Identified in probabilistic models for:
stochastic block model

dense planted sub-matrix;
low-rank tensor completion;

compressed sensing;

planted constraint satisfaction;

Gaussian mixture clustering;

low-density parity check error correcting codes;
sparse principal component analysis;
generalised linear regression;

dictionary learning;

blind source separation;

learning in binary perceptron;

phase retrieval; ...
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SIGN-LESS COMPRESSED SENSING

real-valued phase retrieval

1.2

1+

0.8

0.6

04 r

Absolute value channel, Gauss-Bernoulli X

AMPOSSIBLE- - 4

Perfect recovery
Spinodal

y— | Fx |

Px Gauss-Bernoulli(p)

- You cannot sense
- compressively if
~ you lost the signs!

instability at g=0 - - - - -
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RELU COMPRESSED SENSING

Relu activation, Gauss-Bernoulli signal

IMPOSSIBLE

Perfect recovery
Spinodal
Naive spinodal

y = max (0, F'z™)
Px Gauss-Bernoulli(p)

- Zeros in relu are not

- helpful information-

- theoretically, but

- algorithmically they are.
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PERCEPTRON




GAUSS-BERNOULLI PERCEPTRON

OR 1-BIT COMPRESSED SENSING
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BINARY PERCEPTRON

Gardner, Derrida’89, Gyorgyi’'9o, Sompolinsky, Tishby, Seung'9o

y = sign(Fz*) it %[5(33 o stet 1)
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SYMMETRIC BINARY PERCEPTRON

y = sign(|Fz™| — K) Px(z) = =[6(z — 1) + é(z + 1)]

1
%

Symmetric Door, Rademacher X
. 4 . 4 . 4

1
I "
Lo 2-layer Nl\ﬁ

0 5 10 15 20 | Very Simple yet
l ' . ~ very hard
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- classification!
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K chosen so that P(y=1)=0.5

from: Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395, COLT 18
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INCLUDING HIDDEN VARIABLES

Committee machine

Teacher-student model studied in Schwarze, Herz'92. Proof and approximate message
passing (Aubin, Maillard, Barbier, Macris, Krzakala, LZ’19), submitted to NIPS.

weights

data
' p input units F_ « / l \
labels

Wi L=3 layers
(O Khidden units Wa Y

O output unit

x learned, w fixed

n training samples

Limit: o =




COMMITTEE MACHINE

p p
Ju = sign[sign(z Flizsy) + Sign(z Flizio)]
— —

0.25 1.0

e Specialization phase transition
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COMMITTEE MACHINE

K p
U, — sigdl [ Z sign(z me,’fl)}
=1 i=1

K>1

e Specialization phase transition
e Large algorithmic gap:
> IT threshold: n > 7.65Kp

> Algorithmic threshold
n > const. K*p
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OTHER EXTENSIONS

e Teacher’s model mismatching the student’s model.
Replica predictions known (maybe replica symmetry breaking), no proof yet.

Beyond random iid data F.

So far random orthogonally invariants matrices solved (Kabashima, arxiv:
0808.3900) and partially proven (Gabrie, Manoel, Barbier, Luneau, Macris,
Krzakala, LZ, arxiv:1805.09785).

Beyond separable priors Px.

Priors coming from another GLM solved (Manoel, Krzakala, Mezard, LZ arxiv:
1701.06981 ; Rangan, Fletcher arxiv: 1706.09549; Reeves arxiv:1710.04580).




CONCLUSION

e Teacher student setting for the Generalized linear model.

o Analysis of the Bayes-optimal estimator for random iid matrices, and
separable output and prior.

e Determination of the phase transition and their algorithmic meaning,
approximate message passing.

» Hardness of computational tasks in probabilistic setting
(still a lot to be done).

Thank you for your attention!
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